The Daya Bay Calibration System — Key to θ_{13}

Jianglai Liu
Caltech, for the Daya Bay Collaboration

APS/DNP 08 Meeting, Oakland
Oct 26, 2008
Requirement on Systematic Uncertainty

\[\frac{N_f}{N_n} = \left(\frac{N_{p,f}}{N_{p,n}} \right) \left(\frac{L_n}{L_f} \right)^2 \left(\frac{\epsilon_f}{\epsilon_n} \right) \left[\frac{P_{sur}(E, L_f)}{P_{sur}(E, L_n)} \right] \]

- **Goal:** <1% to \(\sin^2 2\theta_{13} \)
- **Measured Ratio of Rates:**
- **Number of Proton Ratio:**
- **Detector Efficiency Ratio:**

\[\sin^2 2\theta_{13} \]

0.3%

0.2%

Key requirement of the calibration program
Calibration of Detector Efficiency

- **Geometry** (edge effects, spill in/out)
 cancel in ratio for identical detectors

- **Positron detection**
 energy cuts at 1, 8 MeV

- **Neutron detection**
 energy threshold at 6 MeV
 delayed timing cuts \([0.3, 200]\) \(\mu s\)
 Gd/H cancels in near/far ratio when filling in pair

Calibration Program
- Routine (weekly) deployment of sources
- Radioactive sources = fixed energy, LED light source = fixed time
- Tagged cosmogenic background (free) = fixed energy & time
Energy Cuts

Prompt Energy Signal (Simulation)

1 MeV 8 MeV

Reconstructed Positron Energy Spectrum

Energy
Entries 68465
Mean 3.576
RMS 1.462
Underflow 0
Overflow 0

Delayed Energy Signal (Simulation)

6 MeV 10 MeV

reconstructed neutron (delayed) capture energy spectrum

Energy
Entries 79999
Mean 7
RMS 2.22
Underflow 0
Overflow 3

• Stopped positron signal using ^{68}Ge source (2 x 0.511 MeV) $\Rightarrow e^+$ threshold
• Neutron (n source, spallation) capture signal
 • 2.2 MeV $\Rightarrow e^+$ energy scale
 • 8 MeV \Rightarrow neutron threshold at 6 MeV
Major Issue: Neutron Threshold

Simulation: 0.2% on detector efficiency ⇔ knowing positron threshold to 2% (easy), relative neutron threshold to 1% (more difficult)

Strategy: use position reconstructed spallation n-Gd capture signals (full fiducial volume) + weekly deployment of neutron sources (3 vertical axes)

<table>
<thead>
<tr>
<th></th>
<th>Near /day/module</th>
<th>Far /day/module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spallation Neutrons</td>
<td>13500</td>
<td>1100</td>
</tr>
<tr>
<td>σ/E=0.5% per pixel</td>
<td>1 day</td>
<td>10 days</td>
</tr>
</tbody>
</table>

100 pixel/detector
68Ge Source: Stopped e^+

68Ge → 68Ga → 68Zn

Rate: 100 Bq ($T_{1/2} = 270$ days)

Simulation:
- 3% of positrons hitting the stainless steel capsule. Others annihilated in plastic
- Net energy escaped via Bremsstrahlung $\sim 0.17\%$
Neutron Source

Source “parked” above detector during normal running with borated polyethylene shielding

Neutron “leakage”:

- 252Cf (3-4 neutrons/fission) or Am-Be (4.4 MeV gammas): coincidence (dangerous) background level too high

Solution:
- Limit neutron rate to 0.5 Hz
- Use 241Am (alpha) + 13C \Rightarrow n + 16O
- Attenuate alpha energy with Au foil to <4.5 MeV to suppress 16O in excited state (6.15 MeV gamma)

Captures on steel “Neutron-like”!

252Cf (3-4 neutrons/fission) or Am-Be (4.4 MeV gammas): coincidence (dangerous) background level too high
Design of Calibration Unit

- Three units per detector (3 z axes)

- Each unit contains three stepper motor systems on a turntable, capable of deploying three sources: 68Ge, neutron, and LED along a given vertical axis

- 100% automated remote control/monitoring software

- Position encoder, limit switch, load cell to ensure a fail safe system

- Selection of materials: Stainless steel, Teflon, Viton and Acrylic
Full Size Prototype

- Cable restrainer
- Acrylic wheel
- 30:1 Gear box
- Stepper motor
- Turntable motor/gearbox
- Teflon pulley
- Load cell
- Limit switch

Tested in lab >20-year worth of deployment!
Dragging Along Teflon Bellows
Status

• Mechanical/electronics design finished. Performed many prototype tests
• Fabrication in progress. On schedule to ship 3 units to Daya Bay Dec. 08

Turn-table plate out-of the shop

Assembly area at Caltech
Backups
Experimental Principle of Daya Bay

\[\nu_e \text{ Near} \]

\[\text{Far} \]

Unoscillated flux

Flux

\[\sin^2 2\theta_{13} \]

\[\sim 2 \text{ km} \]