Future Accelerator-based Oscillation Experiment (JHFnu, Off-axis)

___3

Changgen Yang
Institute of High Energy Physics
Beijing

Outline

- · Introductory Comments
- · Beam Option and Detector
- · Physics Goals
- · Present Schedule
- Concluding Remarks

Introductory Comments

The current generation of long and medium baseline v oscillation experiments is designed to:

- 1. Confirm SuperK results with accelerator v's (K2K)
- Make precise measurement of oscillation parameters (JHFnu, MINOS)
- 3. $v_u \rightarrow v_e$ apperance search (JHFnu, MINOS)
- 4. $v_{\mu} \rightarrow v_{\tau}$ apperance search (OPERA, ICARUS)
- 5. Resolve the LSND puzzle (MiniBooNE)

Many issues in neutrino physics will still remain unresolved. Next generation experiments is needed.

Beam Option:

- To maximize flux at the desired energy (near oscillation maximum)
- To minimize flux at other energies
- Have narrow energy spectrum
- Low background

Based on the knowledge of the dominant oscillation parameters

Three Beams

Wide Band Beam

2horns

- **♦Intense**
- ♦ Wide sensitivity in Δm^2
- **♦**BG from HE tail
- ♦ Syst. err from spectrum extrapolation

Narrow Band Beam

- ♦ Less HE tail
- ♦ Less sys err from spectrum "counting experiment"
- \Leftrightarrow Easy to tune E_{ν}

momentum selected π

Off Axis Beam

Horns Decay Pipe

- → High int. narrow band beam
- Far Det. ♦ More HE tail than NBB
 - \Rightarrow Hard to tune E_{ν}

Far Det. **Off Axis Beam** Decay Pipe θ Horns Target $\nu(E_{\nu})$ (GeV) 2.5 68-010° $\pi \left(\mathsf{m}_{\pi}, \mathsf{p}_{\pi} \right)$ 2 v=1.0° 1.5 $\mu \left(\mathsf{m}_{\mu}, \mathsf{p}_{\mu} \right)$ 0.5 9 1 E_n(GeV)

Comparision of Spectra

WBB:5200 CC int./22.5kt/yr

NBB: 620 CC int./22.5kt/yr (2GeV/c π tune)

OAB: **2200** CC int./22.5kt/yr (2degree)

$\nu_{\rm e}$ contamination

Very small v_e/v_μ ratio at v_μ spectrum peak: $1\sim2\times10^{-3}$

JHFnu

Pacific Ocean

**********	J-PARC	MINOS	K2K
E(GeV)	/ 50	120	12
Int.(10 ¹² ppp)	/ 330	40	6
Rate(Hz)	0.292	0.53	0.45
Power(MW)	/ 0.77	0.41	0.0052

AERI@Tokai-mura

(60km N.EJ, of KEK)

50GeV PS

2001~2006

(Approved in Dec.2000)

Far detector: Super-Kamiokande

Neutrino Energy Reconstruction

Assume CC quasi elastic (CCQE) reaction

$$E_{\nu} = \frac{m_N E_l - m_l^2 / 2}{m_N - E_l + p_l \cos \theta_l}$$

Neutrino Energy Reconstruction

NuMI Beam: on and off-axis

- Closer site, in Minnesota
 - About 711 km from Fermilab
 - Close to Soudan Laboratory
 - Unused former mine
 - Utilities available
 - Flexible regarding exact location
- Further site, in Canada
 - About 985 km from Fermilab

- · Selection of sites, baselines, beam energies
- Physics/results driven experiment optimization

NuMI Off-axis Detector

- The goal is an eventual 50 kt fiducial volume detector
- Liquid scintillator strips readout by APDs with particle board absorber is the baseline design
- Backup design is glass RPCs
- Present cost is about 150 M\$

An example of a possible detector

Low Z tracking calorimeter

NuMI off-axis detector workshop: January 2003

- absorber material (plastic? Water? Particle board?)
- longitudinal sampling (DX_0) ?
- What is the detector technology (RPC? Scintillator? Drift tubes?)
- Transverse segmentation (e/p⁰)
- Surface detector: cosmic ray background? time resolution?

$CC v_e$ vs NC events in a tracking calorimeter: analysis example

Electron candidate:

- Long track
- 'showering' I.e. multiple hits in a road around the track
- Large fraction of the event energy
- 'Small' angle w.r.t. beam
- NC background sample reduced to 0.3% of the final electron neutrino sample (for 100% oscillation probability)
- 35% efficiency for detection/identification of electron neutrinos

(Near)/Intermediate Detector

Far/Near ratio (OA 2 deg)

Measurements of the neutrino beam:

- 1) Flux/spectrum for v_{μ} and v_{e}
- 2) Profile
- 3) Stability
- 4) Event types(QE, single μ , NC pi0 etc...)
- 5) Direction

Physics Goal of JHFnu(Phase I)

L=295km, En=0.5~2GeV(Match the WCD)

Precise determination of neutrino oscillation parameters:

 $\begin{array}{c} \sin^2 2\theta_{23} \rightarrow 1\% \\ \Delta m_{23}{}^2 \rightarrow 1\times 10^{-4} \mathrm{eV^2} \\ \mathrm{at} \ (\sin^2 2\theta = 1.0, \, \Delta m^2 = 3.2\times 10^{-3} \mathrm{eV^2}) \\ \sin^2 2\theta_{13} \rightarrow &< 1\% \end{array}$ Physics Goal of JHFnu(Phase II)

CP violation measurement Proton decay

The Physics Goal of NuMI

- Observation of the transition $\nu_{\mu} \rightarrow \nu_{e}$
- Measurement of $heta_{13}$
- Determination of mass hierarchy (sign of Δm_{23})
- Search for CP violation in neutrino sector
- Measurement of CP violation parameters
- · Testing CPT with high precision

Δm_{23}^2 and θ_{23} measurement

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}(1.27 \Delta m_{23}^{2} L/E)$$

ν_{μ} disappearance

1ring FC μ**-like**

Ratio after BG subtraction

Reconstructed Ev (MeV)

Fit with $1-\sin^2 2\theta \cdot \sin^2 (1.27 \Delta m^2 L/E)$

θ_{13} measurement

 $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(1.27 \Delta m_{23}^{2} L/E)$

- A mixing angle between 1^{st} and 3^{rd} generation, θ_{13} may be not very small
- A discovery of $v_{\mu} \rightarrow v_{e}$ can open the new window to study <u>CP violation</u> in this mode
- May be a source of baryogenesis in the universe

θ_{13} Issue

- Oscillation Probability (or $\sin^2 2\theta_{\mu e}$) is not unambigously related to <u>fundamental</u> parameters, θ_{13} or $U_{e3}^{\ 2}$
- At low values of $\sin^2 2\theta_{13}$ (~0.01), the uncertainty could be as much as a factor of 4 due to matter and CP effects

Antineutrinos help greatly

Antineutrinos are crucial to understanding:

- Mass hierarchy
- CP violation
- CPT violation

High energy experience: antineutrinos are 'expensive'.

For the same number of POT

Ingredients: $\sigma(\pi^+)\sim 3\sigma(\pi^-)$ (large x)

NuMI ME beam energies:

 $\sigma(\pi^+)\sim 1.15\sigma(\pi^-)$ (charge conservation!)

Neutrino/antineutrino events/proton ~ 3

(no Pauli exclusion)

CP Violation Study

Compare $\nu_{\mu} \rightarrow \nu_{e}$ with $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$

Letter of Intent (NuMI)

- A Letter of Intent has been submitted to Fermilab in June expressing interest in a new v effort using off-axis detector in the NuMI beam
- This would most likely be a ~15 year long, 2 phase effort, culminating in study of CP violation
- The LOI was considered by the Fermilab PAC at its Aspen July, 2002, meeting

Schedule of NuMI

- Workshop on detector technology issues planned for January, 2003 (done)
- Proposal to DOE/NSF in early 2003 for support of R&D (done) and subsequent construction of a Near Detector in NuMI beam to be taking data by early 2005
- Proposal for construction of a 25 kt detector in late 2004
- Site selection, experiment approval, and start of construction in late 2005
- Start of data taking in the Far Detector in late 2007
- Formation of an international collaboration to construct a 50 kton detector

Schedule of JHFnu(4 year plan)

- → KEK(~163 M\$)
- → MEXT(Ministry of Education, Science and Technology)
- **→** Council for Science and Technology Policy
- → Ministry of Finance
- Approval for JFY 2005?

Important Reminder

- The measurement of θ_{13} is made complicated by the fact that oscillation probability is affected by matter effects and possible CP violation
- No unique mathematical relationship between oscillation probability and θ_{13}
- For low values of θ_{13} , sensitivity of an experiment to seeing $v_{\mu} \rightarrow v_{e}$ depends very much on δ
- Several experiments with different conditions and with both \underline{v} and \overline{v} will be necessary to disentangle these effects
- θ_{13} needs to be sufficiently large if one is to have a chance to investigate CP violation in v sector

θ_{13} measurement:superbeams vs. reactor

P. Huber et al., hep-ph/0303232

Concluding Remarks

- Neutrino Physics appears to be an exciting field for many years to come
- Most likely several experiments with different running conditions will be required
- Accelerator-based oscillation experiment offer a promising avenue to pursue many physics
- Need direct reactor experiment that measure $\sin^2 2\theta_{13}$ down to the 0.01 level