Accelerator-based Long-Baseline Neutrino Oscillation Experiments

Kam-Biu Luk

University of California, Berkeley and Lawrence Berkeley National Laboratory

Discovery of Atmospheric Neutrino Oscillation

What Have We Learned From Atmospheric v?

Best Fit:

- Super-K: $\Delta m^2_{32} = 0.0025 \text{ eV}^2$ $\sin^2(2\theta_{23}) = 1.0$
- MACRO: $\Delta m^2_{32} = 0.0025 \text{ eV}^2$ $\sin^2(2\theta_{23}) = 1.0$
- Soudan 2: $\Delta m^2_{32} = 0.01 \text{ eV}^2$ $\sin^2(2\theta_{23}) = 1.0$

Recent Results From Super-K

Accelerator-based Neutrino Experiments

- High-purity v_{μ} beam, with a small amount of v_{e}
- Can control the energy of of the ν_μ beam by changing the positions of the target and the horns

Goals of Accelerator-based Long-baseline Neutrino Experiments

- Confirmation of ν_{μ} oscillation and establish the oscillation pattern
- Precise measurement of Δm^2_{32} and $\sin^2(2\theta_{23})$
- Determination of participating neutrino types e.g. Positively identify ν_τ
- Look for v_e appearance:
- $\cdot \quad \text{Compare And Selfathor with (285) sin $\left(\frac{\Delta m_{31}^2 L}{\Delta t_{42n}}\right)$}$

First Generation of Long-Baseline Experiment

K2K: reproducing atmospheric neutrino oscillation

Near Detector of K2K

(6 ton)

~700 ton

Fid. mass = 25 ton

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

Usage of the Near Detector

- Determine direction and divergence of ν_μ beam through muons
- Study low-energy ν_{μ} interaction
- Measure ν_{μ} spectrum

Far Detetor of K2K: Super-Kamiokande

- 50 kton water Cherenkov counter with a fiducial mass of 22.5 kton
- · Inner and outer regions are optically separated

Results of K2K-I

Observed 56 events in 2 years, expect $80^{+7.3}$ _{-8.0}

- K2K result is consistent with SK.
- · More data are being taken.

Second Generation of Long-Baseline Experiments

· MINOS

- Determine energy distribution of oscillations
- Precised measurement of oscillation parameters
- Determine neutrino flavors involved
- Direct measurement of v vs v oscillation using a magnetized far detector:
 - using atmospheric v's.
 - eventually with beam

Far Detector of MINOS

8m octagonal steel & scintillator tracking calorimeter

- Sampling every 2.54 cm
- 4cm-wide strips of scintillator
- 2 sections, 15m each
- 5.4 kton total mass
- 55%/ \sqrt{E} for hadrons
- 23%/ \sqrt{E} for electrons
- Magnetized Iron (B~1.5T)
- 484 planes of scintillator
 - 26,000 m²

MINOS Near Detector

- 3.8 x 4.8m "octagonal" steel & scintillator tracking calorimeter
- Same basic construction, sampling and response as the far detector.
- No multiplexing in the main part of the detector due to small size and high rates.
 - Hamamatsu M64 PMT
 - Faster Electronics (QIE)
- · 282 planes of steel
- 153 planes of scintillator

MINOS Calibration Detector

5.9 cm

- Mini-version of the MINOS near and far detectors
 - \cdot 1m \times 1m \times 3.7 m
 - 60 planes x 24 strips/plane
 - Readout technologies of both the near and far detectors
- Exposed to e^- , π , p and μ beams from 0.5-10 GeV/c at CERN PS
 - First data in 2001 up to 3.5 GeV using far detector readout.
 - Data in 2002 up to 10 GeV and to compare near and far electronics.
 - Additional running in 2003 with full near readout system.

Physics Goals:

- EM and Hadron energy response
- EM and Hadron event topology
- Near/Far readout comparison

Run Plan of NuMI/MINOS

- · Commissioning of NuMI beam in Dec. 2004
- Physics running for MINOS starting in April 2005
- Goal for protons on target in first year = 2.5×10^{20}
- Plans are being developed for increased proton intensity
- Request to Fermilab for 5 years of running with a total of 25×10^{20} protons on target in that time. (Original MINOS physics sensitivity was based on 7.4×10^{20} pot.)

Expectations of MINOS in v_{μ} Disappearance

Expectations of MINOS in v_{μ} Disappearance

Sensitivity of MINOS in v_e Appearance

 3σ discovery potential versus systematic uncertainty on the background.

Sensitivity of MINOS in v_e Appearance

Long-Baseline Neutrino-Oscillation Experiments in Europe

CNGS-ICARUS-OPERA

Go After $v_{\mu} \rightarrow v_{\tau}$ Oscillation

OPERA: Observation of the decay topology of τ in photographic emulsion (~ μm granularity)

ICARUS: detailed TPC image in liquid argon and kinematic criteria (~ mm granularity)

ICARUS

- · Liquid argon TPC, acting as an electronic bubble chamber
- Continuous operation

Long longitudinal muon track crossing the cathode plane

Status and Plan of CNGS-ICARUS

- ICARUS was approved in 1997 by INFN; currently funded as part of the LNGS program.
- In summer 2001, successful operation of the T300 half-module.
- · Second T300 half-module has been completed with industry.
- In 2003, installation of T600 recommended by Gran Sasso Scientific Committee, placed in Hall B of LNGS and commissioned for physics right after.
- LNGSSC and CERN-SPSC recommended to duplicate T600 to reach the design mass.
- INFN approved the T3000 scientific program. The first T1200 module is funded and its design ongoing.
- Complete the T1200 modules by early 2006 in time for CNGS start up.

Physics Goals of CNGS-ICARUS

- Study v_{μ} CC, similar to the goals of MINOS.
- Search for $v_{\mu} \rightarrow v_{e}$ oscillation by observing v_{e} CC
- Search for $v_{\mu} \rightarrow v_{\tau}$ oscillation by observing v_{τ} CC
- Search for $v_{\mu} \rightarrow v_{s}$ oscillations or exotics by studying NC events

QuickTime?and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

interaction

Spectrometer (drift tubes-RPCs)

→ finds the brick of ν interaction

→ μ ID, charge and p

- ✓Vertex
- ✓ Decay kink
- √e/gamma ID
- ✓ Multiple scattering, kinematics

Status and Plan of OPERA

- Production of detector subsystems has started
- Works in Gran Sasso Halls B and C are on-going
- In September 2003, started to install SM1 magnet and RPC
- August 2004, will install SM1 target
- July 2005, will stack bricks
- May 2006, will begin commissioning

Physics Reach of OPERA

 $\nu_{\mu} \rightarrow \nu_{\tau}$ search

full mixing, 5 years run @ 6.76x10¹⁹ pot / year

channel	Signal ($\Delta m^2 (eV^2)$)			ε.BR	Background
	1.3 10 ⁻³	$2.0\ 10^{-3}$	3.0 10 ⁻³		
e	1.8	4.1	9.2	3.4%	0.31
μ	1.4	3.4	7.6	2.8%	0.33
h	1.5	3.5	7.8	2.9%	0.42
total	4.7	11.0	24.6	9.1%	1.06

5 YEARS

No significance probability as a

function of Δm^2

$v_{\mu} \rightarrow v_{e}$ search:

Assuming $\Delta m_{12}^2 \ll \Delta m_{23}^2 = \Delta m_{13}^2 = \Delta m^2$, in the 3 flavour ν oscillation framework

$$P(\nu_u \to \nu_\tau) = \cos^4\theta_{13} \sin^2 2\theta_{23} \sin^2(1.27 \Delta m^2 L/E)$$

$$P(v_u \to v_e) = \sin^2\theta_{23} \sin^22\theta_{13} \sin^2(1.27 \Delta m^2 L/E)$$

subleading transition

- •look for an excess of v_e CC events
- •take into account electron event from $\nu_{\mu} \rightarrow \nu_{\tau}$, $\tau \rightarrow e \nu_{\tau} \nu_{e}$

 $v_{ii} \rightarrow v_{e}$ expected signal and background 5 years: 2.25×10²⁰ pot

θ_{13}	$\sin^2 2\theta_{13}$	Signal	ν_{μ} -> ν_{τ} ,	$\nu_{\mu} CC$	$\nu_{\mu}NC$	ν_eCC
(deg)		l	$\tau \rightarrow e \nu_{\tau} \nu_{e}$			
9	0.095	9.3	4.5	1.0	5.2	18
7	0.058	5.8	4.6	1.0	5.2	18
5	0.030	3.0	4.6	1.0	5.2	18

OPERA sensitivity to θ_{13}

 $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ full mixing

syst. on the v_e contamination up to 10%

	$\sin^2 2\theta_{13}$	θ ₁₃
CHOOZ	< 0.14	11 ⁰
OPERA	< 0.06	7.10

Conclusions

- In the next two years, the best knowledge on Δm^2_{32} will still come from Super-Kamiokande and K2K, and may be MINOS as well.
- By the end of this decade, MINOS, ICARUS, and OPERA could either observe oscillation, or improve the limit in $\sin^2(2\theta_{13})$ to ~0.04 at 90% c.l.

This report is based on materials extracted from the web sites of Super-K, K2K, MINOS, ICARUS, OPERA, and talks of Nishikawa, Itow, Michael, Arneodo, and Duchesneau.