Neutrino Experiments Using Daya Bay Nuclear Power Plants

Kam-Biu Luk (陸錦標)

University of California, Berkeley and Lawrence Berkeley National Laboratory

What Can Be Determined With Reactor ∇_e ?

17 January, 2004

Neutrino at Daya Bay

Kam-Biu Luk

Mixing Angle θ_{13}

Motivations

- It is one of the key parameters in determining the mixing matrix in the lepton sector.
- In the lepton sector, amount of CP violation is given by

$$J_{lepton} \sim \cos^2(\theta_{13}) \sin(2\theta_{12}) \sin(2\theta_{23}) \sin(2\theta_{13}) \sin\delta$$

If $\theta_{13} \neq 0$, neutrino mixing will have profound implications to astrophysics and cosmology, e.g. lepto-genesis could account for matter-anti-matter asymmetry of the Universe.

In KamLAND, what is measured is actually

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx \cos^4 \theta_{13} \left[1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right) \right]$$

Knowing θ_{13} would help in measuring θ_{12} .

Current Knowledge of θ_{13}

• Reactor anti-neutrinos ($v_e \rightarrow v_x$) at 1 km: CHOOZ (France)

17 January, 2004

Neutrino at Daya Bay

Kam-Biu Luk

Subdominant Oscillation Due to θ_{13}

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx \cos^4 \theta_{13} \left[1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right) \right]$$

Large-amplitude oscillation due to θ_{12}

small-amplitude oscillation due to θ_{13}

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

How To Measure θ_{13} With a Reactor?

overburden to reduce cosmic-ray muons

Physics Goals

Nuclear Reactors In The World

Nuclear Reactors In China

Ranking of Reactors

Daya Bay And Ling Ao Nuclear Power Plants

Daya Bay Nuclear Power Plant

$$P_{total} = 5.8 \, GW_{th}$$

Ling Ao Nuclear Power Plant

 $P_{total} = 5.8 \, GW_{th}$

Potential locations of Near Detectors

Oscillation Due to Δm_{12}^2 ?

Neutrino Oscillation Due to Δm^2_{12}

10 km

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

Lantau Island

Hong Kong Island

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

Can we piggy tail to it?

Conclusions

- Daya Wan+Ling Ao (+Ling Tung by ~2010) is emerging as a powerful nuclear-power complex in the world, offering an excellent opportunity to study neutrino physics.
- The complex meets many of the requirements for carrying out the next generation of experiment on θ_{13} :
 - high anti-neutrino flux
 - good overburden in the vacinity of the cores
 - convenient access to the site
 - good infra-structure
- By installing a large LS detector in Lantau Island and using the Daya Wan Stations, we can contribute to the study of the neutrino-oscillation pattern due to θ_{12} and determination of Δm^2_{12} and beyond.