Systematic errors of reactor neutrino experiments

Yifang Wang
Institute of High Energy Physics, Beijing
Jan. 17, 2004

Systematic errors

- Reactor related error
- Detector related error
- Background related error

Reactor: Source of neutrinos

200 MeV / fission $6\overline{v}_e$ / fission

A typical large power reactor produces
3 GW_{thermal} and
6 · 10²⁰ antineutrinos/s

Systematic Error: Power

The 200 MeV/fission part:

Thermal power is routinely measured by the reactor operator in order to adjust the reactor to the highest licensed power

Economics push the error on this to 0.6-0.7%

Reactor thermal power

Known to <1%

Power history for the 3-unit Palo Verde plant

Prediction of reactor neutrino spectrum

- Three ways to obtain reactor neutrino spectrum:
 - Direct measurement
 - First principle calculation
 - Sum up neutrino spectra from ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U
 ²³⁵U, ²³⁹Pu, ²⁴¹Pu from their measured β spectra
 ²³⁸U(10%) from calculation (10%)
- They all agree well within 3%

Total error on neutrino spectrum

Background - Correlated

Background - Uncorrelated: environmental radioactivity

n-production from µ quite well studied at Palo Verde, high energy spectrum and vetoed events can be used to predict background in the interesting region

· Y-F. Wang, L. Miller, GG; Phys. Rev. D 62, 013012 (2000) ·F. Boehm et al., Phys. Rev. D 62, 092005 (2000)

FLUKA is quite accurate for most variables

· Y-F. Wang et al., Phys. Rev. D 64, 013012 (2001)

Parametrization based on FLUKA

T. Hagner et al. | Astroparticle Physics 14 (2000) 33-47

Table 6
Muon-induced background rates in BOREXINO, calculated for different energy regions that are relevant for solar neutrino physics^a

Isotopes	Muon-induced background rates in BOREXINO given in counts/(day × 100 tons) for the different energy regions					
	Full energy range	250 < E < 800 keV ⁷ Be-v region	$0.8 < E < 1.4 \mathrm{MeV}$ pep-v region	2.8 < E < 5.5 MeV ⁸ B-v region		
11C	14.55 ± 1.49	0	7.36 ± 0.75	0		
⁷ Be	0.34 ± 0.04	0.34 ± 0.04	0	0		
11 Be	< 0.034	$<4.3 \times 10^{-4}$	$< 1.0 \times 10^{-4}$	< 0.01		
¹⁰ C	1.95 ± 0.21	0	0	0.56 ± 0.06		
⁸ Li	0.070 ± 0.017	$(2.5 \pm 0.6) \times 10^{-4}$	$(8.0 \pm 2.0) \times 10^{-4}$	0.020 ± 0.005		
⁶ He	0.26 ± 0.03	0.040 ± 0.004	0.07 ± 0.01	0.011 ± 0.001		
8 B	0.11 ± 0.02	0	$(3.3 \pm 0.6) \times 10^{-5}$	0.020 ± 0.004		
9C	0.077 ± 0.025	0	0	0.016 ± 0.005		
⁹ Li + ⁸ He	0.034 ± 0.007	$< 6.8 \times 10^{-4}$	$< 1.0 \times 10^{-3}$	< 0.014		

^a The rates are given in counts/day normalized to 100 tons of target mass.

5t 0.1% Gd-loaded scintillators

```
Shielding:
300 MWE
2 m scintillator +
0.14m Fe
1km baseline
Signal: ~30/day
Eff. : \sim 70\%
BK:
         1/day
 corr.
 uncorr. 0.5/day
```


Position cut

Energy cut

Systematics

sources	Relative error (%)
Reaction cross section	1.9
Number of protons	0.8
Detection efficiency	1.5
Reactor power	0.7
Energy released per fission	0.6
total	2.7

Closer look -- Detection efficiency

Table 6. Summary of the neutrino detection efficiencies.

selection	$\epsilon(\%)$	rel. error (%)
positron energy*	97.8	0.8
positron-geode distance	99.9	0.1
neutron capture	84.6	1.0
capture energy containment	94.6	0.4
neutron-geode distance	99.5	0.1
neutron delay	93.7	0.4
positron-neutron distance	98.4	0.3
neutron multiplicity*	97.4	0.5
combined*	69.8	1.5

^{*}average values

Experience gained

- Not stable Gd-loaded scintillator ($\lambda \sim 5-2m$)
- PMT directly in contact with scintillator \rightarrow too high uncorr. Background \rightarrow too high $E_{th}(1.32 \text{ MeV})$
- Good shielding

 low background
- Homogeneous detector
 Gd peak at 8 MeV
- 2m scintillator shielding gives a neutron reduction of 0.8*10⁶.

12t 0.1% Gd-loaded

scintillators

Shielding:

32 MWE /1m water

0.9 km baseline

Signal: ~20/day

Eff. ~ 10%

BK:

corr.: ~ 15/day

uncorr. ~ 7/day

Very stable Gd-loaded liquid scintillator

Systematics

Sources	power method	Swap method
e+ trigger efficiency	2.0	2.0
n trigger efficiency	2.1	2.1
ν flux prediction	2.1	2.1
v selection cuts	4.5	2.1
Background variation	2.1	N/A
$(1-\varepsilon_1)$ B _{pn}	N/A	3.3
Total	6.1	5.3

Error on v selection cuts obtained from multivariable analysis

Experience gained

- Good Gd-loaded scintillator($\lambda \sim 11$ m)
- Not enough shielding too high corr./uncorr. Background
- Segmentation makes Gd capture peak <6MeV
 - too high uncorr. Background
- Rn may enter the detector, problem?
- Veto eff. is not high enough(97.5%)
- Swap method to measure/cancel backgrounds
 - → key to success
- 1m water shielding gives a neutron reduction of 10^6 (lower energy, complicated event pattern).

KamLAND

1000t scintillators

Shielding:

3000 MWE/3m Water

180 km baseline

Signal: ~0.5/day

Eff. ~40%

BK:

corr.: ~0.001/day

uncorr. ~0.01/day

Large error on fiducial volume

Systematic errors

Systematic errors	E>0.9 MeV	E>2.6 MeV
Total LS mass	2.13	2.13
Fiducial mass ratio	4.03	4.03
Energy threshold		2.13
Efficiency of cuts	2.06	2.06
Live time	0.07	0.07
Reactor power	2.05	2.05
Fuel composition	1.0	1.0
Time lag	0.28	0.28
v spectra	2.25	2.48
Cross section	0.2	0.2
Total	6.0	6.4

Experience gained

- Very good shielding
- Balloon not good → target mass not well defined
- Light transport in scintillator unknown →
 particularly bad for Large detectors → large
 error on position reconstruction
- Background from 8He/9Li
- Not good enough veto tracking system
- 3m water shielding gives a neutron reduction of >13*10⁶(high energy).

Three main types of errors:

reactor related(3%)
background related(0.5-4%)
detector related(3%)

How to reduce these errors?
Can we do better than 1%???

Systematic error comparison

			Chooz	Palo Verde	KamLAND
Reactor power			0.7	0.7	2.05
Reactor fuel/v spectra			2.0	2.0	2.7
ν cross section			0.3	0.2	0.2
No. of protons H/C ratio		H/C ratio	0.8	0.8	1.7
		Mass	-	-	2.1
Efficiency	En	ergy cuts	0.89	2.1	0.26
	Po	sition cuts	0.32		3.5
		ne cuts	0.4		0.
		Gd ratio	1.0		-
	n multiplicity		0.5		-
background c		orrelated	0.3	3.3	1.8
uncorrelated		0.3	1.8	0.1	
Trigger		0	2.9	0	
livetime			0	0.2	0.2

Important point to have small systematic error

- Energy threshold less than 0.9 MeV
- Homogeneous detector
- Scintillator mass well determined
- Target scintillator all from one batch, mixing procedures well controlled
- Not too large detector
- Comprehensive calibration program
- Background well controlled → good shielding
- Be able to measure everything(Veto ineff., background, energy/position bias, ...)
- A lot of unforeseen effects will occur when looking at 0.1% level

Reactor related error

- Use two detectors, far/near to cancel reactor related errors and some of detector/background related errors
- For one/two reactors, cancellation is exact
- For multiple reactors, cancellation is NOT exact
 - Multiple near detectors may be needed
 - Only uncorrelated errors contribute to final errors
 - Optimum positions to have minimum errors, typically 0.1-0.2%
 - → see J. Cao's talk

Background related error

- Just to have enough shielding
- How much is enough?
 - Uncorrelated backgrounds: U/Th/K MC
 - Correlated backgrounds:
 - Y.F. Wang et al., PRD64(2001)0013012
 - T. Hagner et al., Astroparticle Phys. 14(2000) 33

Background - correlated

- Cosmic-muon-induced neutrons:
 - B/S < 0.005 → 1/day @ ~1km
 - Can be measured by veto tagging, accuracy<20%
 - Veto rate $< 1 \text{KHz}, 2-3 \text{ layers RPC} (1600-2400 \text{ m}^2)$?
 - Methods:
 - Overburden > 100 MWE
 - Active Veto, ineff. < 0.5%, known < 0.2%
 - Three scenarios:

	100 MWE	300 MWE	1000 MWE
muon rate/m² (Hz)	4	0.4	0.02
n rate in rock/m³ (/day)	11000	1600	160
reduction required (10 ⁶)	9.2	1.4	0.14
Shielding (water equivalent) (m)	2.5m	2.1m	1.5m

Other correlated backgrounds

• β -neutron instable isotopes from cosmic μ

$$- {}^{8}\text{He}/{}^{9}\text{Li}, Br(n) = 12\%/48\%, {}^{9}\text{Li dominant}$$

- Production rates = $f_{\mu} \cdot N_A \cdot \sigma \cdot Br$

	100 MWE	300 MWE	1000 MWE
Average E _{\mu} (GeV)	36	64	160
muon rate/m ² (Hz)	4	0.4	0.02
Cross section (µb)	0.61	0.94	1.86
⁸ He/ ⁹ Li (1/day/module)	3.4	0.53	0.053

Depth > 300 MWE, best 1000 MWE

Background - Uncorrelated

- $B/S < 0.05 \rightarrow < 8/day @ far site$
- Can be measured by swap method, precision $\sim \sqrt{B/s}=2.5\%/day$
- single rate @ 0.9MeV < 50Hz
 - $2 \cdot R_{\gamma} \cdot R_{n} \cdot \tau < 0.04/day/module$
- Methods:
 - Low activity glass for PMT, > 0.5m oil shielding (dominant!)
 - 3 MWE shielding, low activity sand/aggregate or Fe?
 - Rn concentration $< 20 \text{ Bq/m}^3$, N_2 flushing?
 - (U, Th, K) in Scintillator < 10⁻¹³ g/g, clean Gd
 - All mechanical structure made of low activity materials
 - Calibration gadget made of clean materials such as Teflon, ...
 - Clean everywhere, no dust, no ...

Systematic error comparison

			Chooz	Palo Verde	KamLAND	Cancel ?
Reactor power			0.7	0.7	2.05	<0.1%
Reactor fuel/v spectra			2.0	2.0	2.7	
ν cross section			0.3	0.2	0.2	0
No. of proto	No. of protons H/C ratio		0.8	0.8	1.7	0
	Mass		-	-	2.1	<0.1
Efficiency	fficiency Energy cuts		0.89	2.1	0.26	0.2
Position cuts Time cuts P/Gd ratio n multiplicity		sition cuts	0.32		3.5	0.2
		ne cuts	0.4		0.	0.1
		Gd ratio	1.0		-	0
		0.5		-	<0.1	
background	background correlated		0.3	3.3	1.8	<0.1
uncorrelated			0.3	1.8	0.1	<0.1
Trigger			0	2.9	0	<0.1
livetime			0	0.2	0.2	<0.1

Possibly best systematic errors

- Reactor < 0.1%
- Background < 0.2%
- Energy cut $\sim 0.2\%$
- Position cut $\sim 0.2\%$
- Time cut < 0.1%
- Livetime ~ 0.1%
- Other unexpected < 0.2%
- Total < 0.5%

Further reduction of systematic errors: multiple modules

- Smaller modules have less unknowns
- Multiple handling to control systematic errors
- Easy construction
- Easy movable detector
- Scalable
- Easy to correct mistakes

Summary

- Systematic errors from reactor well under controll: Near vs Far
- Errors from backgrounds: just need "enough" shielding
- Errors from detector: can be controlled to 0.5% level if the detector carefully designed

```
\theta_{13} experiment at 0.5% level is possible ! Let's do it !!!
```