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Recent Results in Neutrino Physics

Solar 
(SNO)

νµ ⇒ ντ

νe ⇒ νµ,τ

Atmospheric 
(Super-K)

Reactor 
(KamLAND)

Accelerator 
(K2K)

• Neutrinos are not massless

• Evidence for neutrino flavor conversion   νe νµ ντ

• Experimental results show that neutrinos oscillate
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UMNSP, θ13, and CP

UMNSP Neutrino Mixing Matrix
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Dirac phase Majorana phases

?

reactor and acceleratoratmospheric, K2K SNO, solar SK, KamLAND 0νββ

tan2 θ13 < 0.03 at 90% CLθ23 = ~ 45° θ12 ~ 32°

small … at bestmaximal large

No good ‘ad hoc’ model to predict θ13.
If θ13 < 10-3 θ12, perhaps a symmetry? 

θ13 yet to be measured 
determines accessibility to CP phase



We Do Not Know ….
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Search for Subdominant Oscillation Effects
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Dominant θ12 Oscillation
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Subdominant θ13 Oscillation
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Global Constraints on θ13

90, 95, 99% CL

Maltoni et al., hep-ph/0309130

∆m23
2

from SK
Chooz

With added SNO CC/NC 
+ KamLAND Constraint

Solar data provide 
constraints at low ∆matm

2

sin2(2θ13) = 0.02 (global best fit)
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Measuring θ13

Method 1: Accelerator Experiments

• appearance experiment
• measurement of νµ → νe and νµ → νe yields θ13,δCP
• baseline O(100 -1000 km), matter effects present

ν µ → ν e

Pµe ≈ sin2 2θ13 sin2 2θ23 sin2 ∆m31
2L

4Eν

+ ...

decay pipehorn absorbertargetp detector

π+

π+ µ+

Method 2: Reactor Neutrino Oscillation Experiment

• disappearance experiment 
• look for rate deviations from 1/r2 and spectral distortions
• observation of oscillation signature with 2 or multiple detectors
• baseline O(1 km), no matter effects 
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Concept of a Reactor Neutrino Measurement of θ13

scintillator νe  detectors 

νe + p → e+ + n

coincidence signal
prompt e+   annihilation
delayed n  capture (in µs)
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• disappearance experiment 
• look for rate deviations from 1/r2 and spectral distortions
• observation of oscillation signature with 2 or multiple detectors
• baseline O(1 km), no matter effects 

νe
< 1 km

νe,µ,τ
~ 1.5-2.5km

Partial cancellation of systematic errors 
in relative measurement

Partial cancellation of systematic errors 
in relative measurement
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θ13=?

Pee ≈1− sin2 2θ13 sin2 ∆m31
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atmospheric frequency dominant

last term negligible for and
∆m31
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~ π /2 sin2 2θ13 ≥10−3
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Reactor Neutrino Measurement of θ13 - Basic Idea
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Reactor Neutrino Measurement of θ13

Present Reactor Experiments

(a) (b)

(c)

Energy (MeV)

(a) Flux at detector

(b) ν cross-section

(c) ν spectrum in detector

detector 1

Future θ13 Reactor Experiment

detector 2

Ratio of Spectra

Energy (MeV)

Absolute Flux
and Spectrum

single  detector

• independent of absolute reactor ν flux
• largely eliminate cross-section errors
• relative detector calibration
• rate and shape information

• independent of absolute reactor ν flux
• largely eliminate cross-section errors
• relative detector calibration
• rate and shape information



Site Criteria for a θ13 Reactor Experiment

Karsten Heeger Beijing, January 17, 2003

Site Criteria

• powerful reactor

• overburden (> 300 mwe)

• underground tunnels or detector halls

• controlled access to site

→ Variable/flexible baseline for optimization to ∆m2
atm and to 

demonstrate subdominant oscillation effect.

→ Optimization of experiment specific to site. Site selection critical 
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China
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Reactor

Detector locations 
determined by infrastructure

Unique Feature
- underground reactor
- existing infrastructure

~20000 ev/year~1.5 x 106 ev/year

Kr2Det: Reactor θ13 Experiment at Krasnoyarsk

Ref: Marteyamov et al, hep-ex/0211070
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Kr2Det: Reactor θ13 Experiment at Krasnoyarsk
Lnear= 115 m, Lfar=1000 m, Nfar = 16000/yr
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Ref: Marteyamov et al., hep-ex/0211070.
Energy (MeV)
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China
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near near

far

70 m 70 m

200-300 m

Kashiwazaki, Japan

- 7 nuclear power stations, World’s most powerful reactors 
- requires construction of underground shaft for detectors 

Kashiwazaki-Kariwa
Nuclear Power Station

6 m shaft hole, 200-300 m depth



Kashiwazaki, Japan
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Layout of Experiment and Sensitivity

Ref: Suekane, Yasuda et al.



Kashiwazaki, Japan
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Effect of Multiple Reactors

Ref: Suekane, Yasuda et al.



The Kashiwazaki-Kariwa Initiative
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• Has the most powerful nuclear power plant in the world: 24.3 GWth
• Plan to carrying in two stages:

stage I: - quick and cheap
- use existing technologies
- with less overburden and smaller detectors
- carry out only rate analysis
- with a 8.5 t far detector, in 2 years, 
collect 40,000 events

stage II: - optimize the distance
- with more overburden and bigger detectors
- carry out shape analysis
- pay more attention to systematic issues

Tentative Milestones

2003 2004 2005 2006 2007 2008 2009

Construction ?R & D Construction

2010 2011

Stage II?Data taking
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China
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Daya Bay, China

My assumptions ….

Reactor 11.6 GW

Near Detectors
distance ~ 300 m
depth ~100 mwe

Far Detector
distance 1800 m
depth 700 mwe
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China



Chooz, France
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‘Double-Chooz’ Sensitivity

sin2(2θ13) < 0.03 at 90% CL

after 3 yrs, ∆matm
2 = 2 x 10-3 eV2

0.1-0.2 km

1.05 km

‘Double-Chooz’ Detectors

10 tons detectors
8.4 GWth reactor power
Near site: 150 m (50 mwe)
Far site: 1050 m (300 mwe) Ref: Lasserre, de Kerret

http://



Chooz, France
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Existing Underground Laboratory at Far Site (1 km)
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Chooz, France
Existing Underground Laboratory at Far Site (1 km)
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Chooz, France

sin2(2θ13)



Chooz, France
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Status Received strong support from the EDF power company to carry out 
CHOOZ II; EDF will finance the civil-engineering study of the near site.

Scintillator work is proceeding at MPI and LNGS. Systematic tests of
stability and compatibility of Gd-loaded scintillator will also start before 
end of January in Saclay.

Engineers have started to look at the inner vessel design and 
integrationscenarios of the detectors in the cavities.

Proto-collaboration is working on LOI.

.



Chooz, France
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European Proto-Collaboration

25 physicists
4 countries

including ..

Saclay
College de France

MPI Heidelberg
TU Munich



Chooz, France
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0.2 < sin2(2θ13) < ~0.04

2003 2004 2005 2006 2007 2008 2009

Site Data takingProp. Construction ?design Construction?

Schedule
In the next 3 months the Double-Chooz project will be presented to the 
scientific councils of the French laboratories:

March 1, 2004: APC (new astroparticle lab in Paris)

Mach 10, 2004: Saclay

March 29-30,2004: CNRS/IN2P3

Tentative Milestones

~0.04 < sin2(2θ13) < 0.025-003
Ref: Lasserre, private communication
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA
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Angra dos Reis, Brazil

Reactor
– Primary 4.1 GW reactor
– Secondary 1.5 GW reactor 
(mostly off, may be decommisioned

Far Detector
– 1.3 km baseline
– 200-250 m granite overburden (600-700mwe)

Near Detector
– 300-350 m baseline
– 20m granite overburden (~60 mwe)

Ref: D. Reyna, ANL
theta13 white paper
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Angra dos Reis, Brazil

Ref: D. Reyna, ANL
theta13 white paper



Angra dos Reis, Brazil
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Ref: D. Reyna, ANL
theta13 white paper
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China
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Search for a Reactor Site in the US
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Braidwood, Il

tunnel along symmetry axis

Ref: J. Link, FNAL
http://mwtheta13.uchicago.edu 

Reactor 6.5 GWth

Near Detector 200 m

Far Detector 1500 m (1800 m)



Braidwood, Il
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Surface Near 
Baseline

200±10 
meters

90 meters 
separate 

reactors 1 &2

Near Detector Location

Ref: J. Link, FNAL
http://mwtheta13.uchicago.edu 



Braidwood, Il
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Elevation Along Experimental Line

The preferred experimental 
line runs due east from the 
plant.

The elevation plot shows it to 
be flat for over a mile and a 
half due east of the plant.

Ref: J. Link, FNAL
http://mwtheta13.uchicago.edu 



Braidwood, Il
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Layout

1500 m

223 m

1300 m

100-110 m

200 m

detector hall detector hall II

Detector halls suitable for two 6 meters spherical detectors Ref: theta13 white paper
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Diablo Canyon, CA

1500 ft

nuclear reactor

2 underground 
ν detectors

• Powerful (two reactors 3.1+ 3.1 GW Eth)
• Overburden (up to 700 mwe)
• Infrastructure (roads, controlled access)  
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> 1 km 0.4 km
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Overburden and Muon Flux

FAR I @ 1.8 km/ ~700 mwe

NEAR @ 400 m/ <  100 mwe

Overburden

FAR I @ 1 km/ ~300 mwe
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5 m
~12 m

Tunnel with Multiple Detector Rooms 
and Movable Detectors

detector room

low-background counting room

detector room
~ 800 mwe

Geology 

• Suitable for tunneling
• Opportunity for geoscience program
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liquid scintillatorbuffer oil

muon veto

passive 
shield

Detector Concept

5 m

1.6 m

acrylic vessel

Movable Detectors
• allow relative efficiency calibration
• allow background calibration in same environment (overburden)
• simplify logistics (construction off-site)
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Positron Energy (MeV)

Statistics and Systematics

Detector Efficiency • near and far detector of same design 
• calibrate relative detector efficiency             

Target Volume & • no fiducial volume cut 

Backgrounds • external active and passive shielding

Total Systematics σsyst ~ 1-1.5%

σrel eff ≤ 1%

σtarget ~ 0.3%

σn bkgd < 1%

σflux < 0.2%

σacc < 0.5%

Reactor Flux • near/far ratio, choice of detector location

Statistical error: σstat ~ 0.5% for L = 300t-yr 

~60,000
~10,000

~250,000

Detector Event Rate/Year

Positron Energy (MeV)

N
ob

s/N
no

-o
sc
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A Comparison of Site Parameters

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China

• Reactor Power
• Baseline
• Detector Size
• Overburden

Not a sensitivity study
Detector design and systematics will determine sensitivity 



Constructing  a Figure of Merit (I)
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σ stat ∝1/ Signal[power,d,volume]statistical precision

FOM1=
Signal[power,d,volume]

Bkgd[depth,volume]



Constructing  a Figure of Merit (II)
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Deadtime[depth,volume] = 0.02 ×
Muonrate[depth,volume]

Muonrate[300,8.5]

Detector deadtime
Chooz 2% deadtime

FOM2 =
Signal[power,d,volume]**(1− Deadtime[depth,volume])

Bkgd[depth,volume]



Constructing  a Figure of Merit (III)
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Oscillation Sensitivity

max oscillation

measured oscillation

FractionofMaxOsc[d] = 1−
Prob[d1]
Prob[d2]
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FOM3 =
Signal[power,d,volume]* (1− Deadtime[depth,volume])

Bkgd[depth,volume]
× FractionofMaxOsc[d]
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Reactor PowerThermal Reactor Power



Detector Volumes
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Volume assumptions based on recent talks, papers, and discussions.

Far
Near
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BaselinesBaselines

?

FarNear



Site Comparison
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Signal/Background

Far
Near
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Site Comparison
SignalxLivetime/Background

Far
Near



Site Comparison
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Far Detector Performance 
without Oscillation Effect



Site Comparison 
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Far Detector Performance 
with Oscillation Effect
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Site Comparison Far Detector Performance with 
and without Oscillation Effect

w/ oscillation

w/out oscillation 
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Search for the effect of sterile ν. 

Supernova watch.

Goals of a Reactor Neutrino Oscillation Experiment

Confirmation of ∆m23
2. 

Resolving parameter degeneracy and limits on CP 
(from a combination with long baseline exp.)

Discovery and measurement of θ13. 
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Future Constraints on θ13

Experiment sin2(2θ13) θ13 When?
CHOOZ < 0.11 < 10

NUMI Off- Axis (5 yr) < 0.006-0.015 < 2.2 2012

Angra dos Reis (Brazil) < 0.02-0.03 < 5 ?

Braidwood (US) < 0.01-0.02 < 2.9 [2009]

Chooz-II (France) < 0.03 < 5.0 [2009]

Daya Bay (China)

Diablo Canyon (US) < 0.01-0.02 < 2.9 [2009]

JPARC-nu (5 yr) < 0.006-0.015 < 2.2 2012

MINOS < 0.07 < 7.1 2008

ICARUS (5 yr) < 0.04 < 5.8 2011

OPERA (5 yr < 0.06 < 7.1 2011

Krasnoyarsk (Russia) < 0.016 < 3.6 ?

Kashiwazaki (Japan) < 0.026 < 4.6 [2008]

Upper limits correspond to 90% C.L.
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Diablo Canyon
1500 ft

nuclear reactor

• 2-3 underground  scintillator ν detectors, 50-100 t 
• study relative rate difference and spectral distortions
• projected sensitivity:  sin22θ13 ≈ 0.01-0.02 

νe + p → e+ + n

coincidence signal
prompt e+   annihilation
delayed n  capture (in µs)

Measuring θ13 with Reactor Neutrinos

Pee ≈1− sin2 2θ13 sin2 ∆m31
2L

4Eν

+
∆m21

2L
4Eν

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos4 θ13 sin2 2θ12

atmospheric frequency dominant, 
sterile contribution possible

0.4 km

−sin2 2θsterile sin2 ∆msterile
2L

4Eν

1-2 km



Detector Baseline
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nuclear reactor

1-2 km

< 1 km

0.4 km

• Detector baselines sensitive to ∆matm
2.

• Tunnel (1-2 km) + fixed detector (0.4 km) 
preserves option to adjust/optimize  baseline

Adjustable Baseline 
• to maximize oscillation sensitivity
• to demonstrate oscillation effect

Near detector

Normalizes flux for rate 
analysis.

Far detectors

Useful for shape analysis, 
more robust to ∆matm

2.
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