## Physics of $\sin^2 2\theta_{13}$

$$\bigstar$$
 What is  $\theta_{13}$ ?

$$\begin{pmatrix} \nu_{\mathbf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} \ = \ \begin{pmatrix} \mathbf{V_{e1}} & \mathbf{V_{e2}} & \mathbf{V_{e3}} \\ \mathbf{V_{\mu 1}} & \mathbf{V_{\mu 2}} & \mathbf{V_{\mu 3}} \\ \mathbf{V_{\tau 1}} & \mathbf{V_{\tau 2}} & \mathbf{V_{\tau 3}} \end{pmatrix} \begin{pmatrix} \nu_{\mathbf{1}} \\ \nu_{\mathbf{2}} \\ \nu_{\mathbf{3}} \end{pmatrix} \qquad \qquad (\mathbf{with} \ |\mathbf{V_{e3}}| \equiv \mathbf{sin}\theta_{\mathbf{13}})$$

 $\theta$  13 is the yet unknown (smallest) lepton mixing angle.

$$\bigstar$$
 What does  $\sin^2 2\theta_{13}$  mean?

$$P(\overline{\nu_e} \rightarrow \overline{\nu_e}) ~\approx~ 1~-~ sin^2 2\theta_{13} \cdot sin^2 \left(1.27 \frac{\Delta m_{atm}^2 L}{E}\right) \quad (Reactor)$$

 $\sin^2 2\theta_{13}$  measures the oscillation amplitude of reactor neutrinos, e.g., at Daya Bay (大亚湾).

## **Neutrino Sources and Topics:**



**←Sun** 







←Atmosphere Supernovae→ Astronomy

 $\leftarrow$  Big Bang Reactors ightarrow



Accelerators -> Laboratories



# Physics of $\sin^2 2\theta_{13}$

Zhi-zhong Xing/IHEP (邢志忠/高能所)

#### **OUTLINE**

- $\bigstar$  High Impact of  $\theta_{13}$  on Particle Physics
- $\star$   $\theta_{13} = 0$ : Prerequisite and Consequences
- $\star$   $\theta_{13} \neq 0$ : How Big or How Small?
- \* Expectations from Global Analyses
- **Expectations from Specific Models**
- **★** Comments and Concluding Remarks

## High Impact of $\theta_{13}$ on Particle Physics

Strong experimental evidence in favor of neutrino oscillations (SK, SNO, KamLAND, K2K, ...) implies that

- **\*** neutrinos are massive
- **★** lepton flavors are mixed

A major breakthrough in today's particle physics

In SM, lepton number is conserving & neutrinos are massless Weyl particles. But many people did not believe that, because  $\[ \stackrel{}{\sim} m_v = 0 \]$  is not guaranteed by fundamental law or symmetry  $\[ \stackrel{}{\sim} m_v \neq 0 \]$  is naturally expected in grand unified theories Today we are convinced that  $m_v \neq 0$  is actually true. Then,  $\[ \stackrel{}{\sim} SM \]$  incomplete—an experimental reason to go beyond SM  $\[ \stackrel{}{\sim} lepton limits mixing at the front of experimental particle physics$ 

#### Quark flavor mixing (CKM matrix):

$$\mathbf{V} = egin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{c_{23}} & \mathbf{s_{23}} \ \mathbf{0} & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} egin{pmatrix} \mathbf{c_{13}} & \mathbf{0} & \mathbf{s_{13}} \ \mathbf{0} & \mathbf{e^{-i\delta}} & \mathbf{0} \ -\mathbf{s_{13}} & \mathbf{0} & \mathbf{c_{12}} \end{pmatrix} egin{pmatrix} \mathbf{c_{12}} & \mathbf{s_{12}} & \mathbf{0} \ -\mathbf{s_{12}} & \mathbf{c_{12}} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

Experimental steps: 
$$\theta_{12} \rightarrow \theta_{23} \rightarrow \theta_{13} \rightarrow \delta$$

$$\sim 13^{\circ} \qquad \sim 2^{\circ} \qquad \sim 0.2^{\circ} \qquad \sim 65^{\circ}$$

#### Lepton flavor mixing (MNS matrix):

$$\mathbf{V} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{c_{23}} & \mathbf{s_{23}} \\ \mathbf{0} & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{13}} & \mathbf{0} & \mathbf{s_{13}} \\ \mathbf{0} & \mathbf{e^{-i\delta}} & \mathbf{0} \\ -\mathbf{s_{13}} & \mathbf{0} & \mathbf{c_{13}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{12}} & \mathbf{s_{12}} & \mathbf{0} \\ -\mathbf{s_{12}} & \mathbf{c_{12}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{e^{i\rho}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{e^{i\sigma}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

Experimental steps: 
$$\theta_{23} \rightarrow \theta_{12} \rightarrow \theta_{13} \rightarrow \delta/\rho/\sigma$$

$$\sim 45^{\circ} \sim 33^{\circ} < 13^{\circ} \sim ???$$

#### Lessons of quark mixing for lepton mixing:

- **\star** The smallest mixing angle  $\theta_{13}$  is a crucial turning-point in doing precision measurements and detecting CP violation
- **★** Neutrino masses might have a relatively weak hierarchy (or near degeneracy) relevant to the bi-large mixing pattern

Why is the measurement of  $\theta_{13}$  extremely important?

- $\star$   $\theta_{13}$  is a fundamental parameter of flavor physics
- $\star$   $\theta$  controls the observable effects of CP violation
- $\star$   $\theta_{13}$  is a sensitive model / theory discriminator
- $\star$   $\theta_{13}$  is a key to search for new and newer physics

Possible impact of  $\theta_{13}$  on astrophysics and cosmology: Dark matter, Matter-Antimatter asymmetry, Supernovae, ...



### $\theta_{13} = 0$ : Prerequisite and Consequences

Experimentally,  $\theta_{13} < 13^{\circ}$  (CHOOZ),  $\theta_{13} = 0$  is not impossible Theoretically, there is no good reason (symmetry) for  $\theta_{13} = 0$ 

Note that  $\theta_{13} = 0$  would hold, if there existed mass degeneracy of charged leptons or neutrinos (with Majorana phases  $\Psi_i$ ):

$$\Rightarrow$$
  $\mathbf{m}_1 = \mathbf{m}_3$  with  $\Psi_1 = \Psi_3$  or  $\mathbf{m}_2 = \mathbf{m}_3$  with  $\Psi_2 = \Psi_3$ 

But all these conceptually interesting limits are unrealistic!

Consequences of  $\theta_{13} = 0$ :  $\triangle$  One CP-violating phase would vanish;  $\triangle$  Leptonic unitarity triangles would collapse — CP violation would not appear in neutrino oscillations;  $\triangle$  There would be no matter effects on  $m_3$  and  $\theta_{23}$ ; etc.

### $\theta_{13} \neq 0$ : How Big or How Small?

Convincing flavor theory has been lacking—it is at present impossible to predict fermion masses, flavor mixing angles and CP phases at a fundamental level—the flavor problem

Flavor experiments play the leading role — determine those unknown parameters and shed light on the unknown theory  $\star$  Current experimental data allow us to get useful hints on the size of  $\theta_{13}$  from global analyses of solar, atmospheric, reactor and accelerator neutrino oscillation data (like good lesson from pinning down  $m_t$  with LEP electroweak data and  $\sin 2\beta$  with non-B factory quark mixing data) — essentially model-independent.

 $\bigstar$  Current experimental data help us to build some realistic models from which the size of  $\theta_{13}$  can be calculated.

#### **Expectations from Global Analyses**

**Group A:** J. Bahcall, M. Gonzalez-Garcia, C. Pena-Garay (BGP)

**Group B: M. Maltoni, T. Schwetz, M. Tortola, J. Valle (MSTV)** 

Main approximation: one mass scale dominance for 3 types

of experimental data ( $\Delta$  m  $_{\text{sun}}^2$  <<  $\Delta$  m  $_{\text{atm}}^2$  ,  $\delta$  is decoupled)

 $\Rightarrow$  Solar and KamLAND:  $\Delta m_{21}^2$ ,  $\theta_{12}$ ,  $\theta_{13}$ ;

 $^{\star}$  Atmospheric and K2K:  $\Delta m_{32}^2$ ,  $\theta_{23}$ ,  $\theta_{13}$ ;

Arr CHOOZ:  $\Delta m_{32}^2$ ,  $\theta_{13}$ .





**★** Best fit of BGP:  $\theta_{13} = 5.44^{\circ}$  or  $\sin^2 2 \theta_{13} = 0.036$ 

**★** Best fit of MSTV:  $\theta_{13} = 4.44^{\circ}$  or  $\sin^2 2 \theta_{13} = 0.024$ 

#### An experiment with sensitivity 1% may measure $\sin^2 2 \theta_{13}$ !

| Parameter (BGP [2])                        | Best fit | 95% C.L.     | $3\sigma$ interval |
|--------------------------------------------|----------|--------------|--------------------|
| $\Delta m_{21}^2 \ (10^{-5} \ {\rm eV}^2)$ | 7.1      | 5.8-8.9      | 4.6-10.8           |
| $\Delta m_{32}^2 \ (10^{-3} \ {\rm eV^2})$ | 2.6      | 1.6-3.6      | 1.4-4.1            |
| $\tan^2 \theta_{12}$                       | 0.45     | 0.31 - 0.73  | 0.27-0.98          |
| $	an^2	heta_{23}$                          | 1.0      | 0.52 - 2.19  | 0.44-2.73          |
| $\sin^2 \theta_{13}$                       | 0.009    | $\leq 0.042$ | $\leq 0.061$       |

| Parameter (MSTV [3])                       | Best fit | $2\sigma$ interval | $3\sigma$ interval |
|--------------------------------------------|----------|--------------------|--------------------|
| $\Delta m_{21}^2 \ (10^{-5} \ {\rm eV}^2)$ | 6.9      | 6.0-8.4            | 5.4-9.5            |
| $\Delta m_{31}^2 \ (10^{-3} \ {\rm eV}^2)$ | 2.6      | 1.8-3.3            | 1.4-3.7            |
| $\sin^2 	heta_{12}$                        | 0.30     | 0.25 - 0.36        | 0.23-0.39          |
| $\sin^2 	heta_{23}$                        | 0.52     | 0.36-0.67          | 0.31-0.72          |
| $\sin^2 	heta_{13}$                        | 0.006    | $\leq 0.035$       | $\leq 0.054$       |

#### **Expectations from Specific Models**

Low-energy phenomenology of lepton masses and mixing:  $M_I$ -charged lepton mass matrix;  $M_V$ -effective neutrino mass matrix

$$\mathbf{U}_l^\dagger \mathbf{M}_l \, \mathbf{U}_l^\prime = \begin{pmatrix} \mathbf{m_e} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_{\mu} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{m}_{\tau} \end{pmatrix}, \ \ \mathbf{U}_{\nu}^\dagger \mathbf{M}_{\nu} \mathbf{U}_{\nu}^* = \begin{pmatrix} \mathbf{m_1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{m_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{m_3} \end{pmatrix}, \quad \boxed{\mathbf{V} = \mathbf{U}_l^\dagger \mathbf{U}_{\nu}}$$

Totally 12 parameters, but only 7 of them have been known

 $\mathbf{M}_l$  and  $\mathbf{M}_v$  may stem from GUTs or non-GUT models, but their structures are in general unspecified. Testable relation between lepton masses and flavor mixing parameters can't be achieved, unless phenomenological hypotheses are made.

Results for  $\theta_{13}$  from "predictive" models are of two types:  $\star \theta_{13}$  is given in terms of mass ratios of leptons or quarks  $\star \theta_{13}$  is given by other known v — oscillation parameters

#### "Democratic" neutrino mixing model (H. Fritzsch, Z.Z. X., 1996)

Idea:  $S(3)_L \times S(3)_R$  symmetry of  $M_l$  and S(3) symmetry of  $M_{\nu}$  are explicitly broken by small perturbations

$$egin{aligned} \mathbf{M}_l &= rac{\mathbf{c}_l}{3} egin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix} \; + \; egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & arepsilon_l \end{pmatrix} \; + \; egin{pmatrix} -\mathrm{i}\delta_l & 0 & 0 \ 0 & \mathrm{i}\delta_l & 0 \ 0 & 0 & 0 \end{pmatrix} \end{bmatrix} \; , \ \mathbf{M}_
u &= \mathbf{c}_
u egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \; + \; egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & arepsilon_
u \end{pmatrix} \; + \; egin{pmatrix} -\delta_
u & 0 & 0 \ 0 \ 0 & \delta_
u & 0 \ 0 \end{pmatrix} \; . \end{aligned}$$

Bi-large lepton flavor mixing with  $\theta_{13} \neq 0$  and CP violation:

$$\mathbf{V} = egin{pmatrix} rac{1}{\sqrt{2}} & rac{-1}{\sqrt{2}} & 0 \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & rac{-2}{\sqrt{6}} \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & rac{-2}{\sqrt{6}} \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & 0 \end{pmatrix} + i \sqrt{rac{m_e}{m_{\mu}}} egin{pmatrix} rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & rac{-2}{\sqrt{6}} \ rac{1}{\sqrt{2}} & rac{-1}{\sqrt{2}} & 0 \ 0 & 0 & 0 \end{pmatrix} + rac{m_{\mu}}{m_{\tau}} egin{pmatrix} rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} & rac{1}{\sqrt{6}} \ rac{-1}{\sqrt{12}} & rac{-1}{\sqrt{12}} & rac{1}{\sqrt{3}} \end{pmatrix}$$

Prediction  $\sin \theta_{13} \approx 2/\sqrt{6} \times \sqrt{m_e/m_{\mu}} \approx 0.057$  Or,  $\sin^2 2 \theta_{13} = 0.013$ 

#### SO(10)—inspired neutrino model (W. Buchmüller, D. Wyler, 2001)

Idea: Lepton-quark symmetry  $\epsilon_{\rm u} \sim 0.07$  and  $\epsilon_{\rm d} \sim 0.21$  from data

$$\mathbf{M_D} \sim \mathbf{M_u} \sim \mathbf{m_t} \begin{pmatrix} \mathbf{0} & \mathcal{O}(\epsilon_u^3) & \mathbf{0} \\ \mathcal{O}(\epsilon_u^3) & \mathcal{O}(\epsilon_u^2) & \mathcal{O}(\epsilon_u^2) \\ \mathbf{0} & \mathcal{O}(\epsilon_u^2) & \mathcal{O}(\mathbf{1}) \end{pmatrix}, \quad \mathbf{M_l} \sim \mathbf{M_d} \sim \mathbf{m_b} \begin{pmatrix} \mathbf{0} & \mathcal{O}(\epsilon_d^3) & \mathbf{0} \\ \mathcal{O}(\epsilon_d^3) & \mathcal{O}(\epsilon_d^2) & \mathcal{O}(\epsilon_d^2) \\ \mathbf{0} & \mathcal{O}(\epsilon_d^2) & \mathcal{O}(\mathbf{1}) \end{pmatrix}$$

Seesaw mechanism  $M_{\nu} \approx M_D M_R^{-1} M_D^T$  to obtain light neutrinos

$$\mathbf{M_R} \sim \mathbf{M_3} \begin{pmatrix} \mathbf{0} & \mathcal{O}(\epsilon_\mathbf{u}^5) & \mathbf{0} \\ \mathcal{O}(\epsilon_\mathbf{u}^5) & \mathcal{O}(\epsilon_\mathbf{u}^4) & \mathcal{O}(\epsilon_\mathbf{u}^4) \\ \mathbf{0} & \mathcal{O}(\epsilon_\mathbf{u}^4) & \mathcal{O}(\mathbf{1}) \end{pmatrix}, \quad \mathbf{M_\nu} \sim \frac{\mathbf{m_t^2}}{\mathbf{M_3}} \begin{pmatrix} \mathbf{0} & \mathcal{O}(\epsilon_\mathbf{u}) & \mathbf{0} \\ \mathcal{O}(\epsilon_\mathbf{u}) & \mathcal{O}(\mathbf{1}) & \mathcal{O}(\mathbf{1}) \\ \mathbf{0} & \mathcal{O}(\mathbf{1}) & \mathcal{O}(\mathbf{1}) \end{pmatrix}.$$

Mass spectra  $m_1: m_2: m_3 \sim \epsilon_u: \epsilon_u: 1$  and  $M_1: M_2: M_3 \sim \epsilon_u^6: \epsilon_u^4: 1$ 

It is possible to get bi-large mixing pattern with a prediction  $\sin \theta_{13} \sim 1/\sqrt{2} \times \sin \theta_{\rm C} \approx 0.155$  i.e.  $\sin^2 2 \theta_{13} = 0.094$ . Too good?

Comments: leptogenesis can be accommodated; RGE effects are not included; difficult to get a satisfactory flavor picture

#### Texture zeros of M<sub>V</sub> (P. Frampton, S. Glashow, D. Marfatia, 2002)

| Pattern        | Texture of $M_{\nu}$                                                                                                            | Prediction for $\theta_{13}$                                                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>1</sub> | $ \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{pmatrix} $                             | $	ext{sin}	heta_{	ext{z}}pprox\sqrt{rac{	ext{R}_{ u}	an^{2}	heta_{	ext{x}}}{	an^{2}	heta_{	ext{y}} 1-	an^{4}	heta_{	ext{x}} }}$                      |
| $\mathbf{A_2}$ | $ \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix} $                             | $	ext{sin}	heta_{	ext{z}}pprox\sqrt{rac{	ext{R}_{ u}	an^{2}	heta_{	ext{x}}	an^{2}	heta_{	ext{y}}}{ 1-	an^{4}	heta_{	ext{x}} }}$                      |
| $\mathbf{B_1}$ | $ \begin{pmatrix} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{pmatrix} $                             | $	ext{sin}	heta_{	ext{z}}pproxrac{	ext{R}_{ u}	an	heta_{	ext{x}}}{(1+	an^2	heta_{	ext{x}}) 	an2	heta_{	ext{y}}	ext{cos}\delta }$                     |
| $\mathbf{B_2}$ | $\begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}$                               | $	ext{sin}	heta_{	ext{z}}pproxrac{	ext{R}_{ u}	an	heta_{	ext{x}}}{(1+	an^2	heta_{	ext{x}}) 	an2	heta_{	ext{y}}	ext{cos}\delta }$                     |
| $\mathbf{B_3}$ | $ \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix} $                             | $	ext{sin}	heta_{	ext{z}}pproxrac{	ext{R}_{ u}	an	heta_{	ext{x}}}{(1+	an^2	heta_{	ext{x}})	an^2	heta_{	ext{y}} 	an2	heta_{	ext{y}}	ext{cos}\delta }$ |
| B <sub>4</sub> | $ \begin{pmatrix} \times & \times & \times \\ \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix} $ | $	ext{sin}	heta_{	ext{z}}pproxrac{	ext{R}_{ u}	an^2	heta_{	ext{x}}	an^2	heta_{	ext{y}}}{(1+	an^2	heta_{	ext{x}}) 	an^2	heta_{	ext{y}}	cos\delta }$   |
| <b>C</b>       | $ \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix} $                        | $	ext{sin}	heta_{	ext{z}} \sim rac{1}{	ext{tan}2	heta_{	ext{x}}	ext{tan}2	heta_{	ext{y}}	ext{cos}\delta}$                                            |

 $R_v \equiv \Delta m_{sun}^2 / \Delta m_{atm}^2$ . We get  $\theta_{13} \sim 5^\circ$  or  $\sin^2 2 \theta_{13} = 0.03$ 

#### Minimal seesaw V model (P. Frampton, S. Glashow, T. Yanagida, 2002)

**Motivation:** to simultaneously interpret neutrino oscillations and cosmological baryon number asymmetry

In the basis of diagonal  $M_I$  and  $M_R$ , FGY ansatz of  $M_D$  gives

$$\mathbf{M_{D}} = \begin{pmatrix} \mathbf{a} & \mathbf{0} \\ \mathbf{a'} & \mathbf{b} \\ \mathbf{0} & \mathbf{b'} \end{pmatrix}, \quad \mathbf{M_{\nu}} \approx \mathbf{M_{D}} \mathbf{M_{R}^{-1}} \mathbf{M_{D}^{T}} = \begin{pmatrix} \frac{\mathbf{a^2}}{\mathbf{M_1}} & \frac{\mathbf{aa'}}{\mathbf{M_1}} & \mathbf{0} \\ \frac{\mathbf{aa'}}{\mathbf{M_1}} & \frac{(\mathbf{a'})^2}{\mathbf{M_1}} + \frac{\mathbf{b^2}}{\mathbf{M_2}} & \frac{\mathbf{bb'}}{\mathbf{M_2}} \\ \mathbf{0} & \frac{\mathbf{bb'}}{\mathbf{M_2}} & \frac{(\mathbf{b'})^2}{\mathbf{M_2}} \end{pmatrix}$$

Since  $|\text{Det}(\mathbf{M}_{v})| = \mathbf{m}_{1} \, \mathbf{m}_{2} \, \mathbf{m}_{3} = 0$ ,  $\mathbf{m}_{1} = 0$  or  $\mathbf{m}_{3} = 0$  must hold.  $\bigstar$  The texture of  $\mathbf{M}_{v}$  is stable against radiative corrections;  $\bigstar$  CP-violating phases of  $\mathbf{M}_{v}$  can be determined by  $\theta_{13}$  etc. We take the  $\mathbf{m}_{1} = 0$  case (normal hierarchy) as an example:

#### Two CP-violating phases (W.L. Guo / J.W. Mei, Z.Z. X., 2003):

$$\delta \ = \ \mathbf{arccos} \left[ \frac{\mathbf{c_y^2 s_z^2 - R_\nu s_x^2 \left( c_x^2 s_y^2 + s_x^2 c_y^2 s_z^2 \right)}}{\mathbf{2R_\nu s_x^3 c_x s_y c_y s_z}} \right]$$

$$\sigma = rac{1}{2} {f arctan} \left[ rac{{f c_x s_y sin} \delta}{{f s_x c_y s_z + c_x s_y cos} \delta} 
ight]$$

 $|\cos \delta| < 1$  requires  $\sin \theta_{13} \sim 0.075$ , in a very restrictive range

#### Cosmological baryon number asymmetry via leptogenesis:

$$\begin{split} \varepsilon_1 \; &\equiv \; \frac{\Gamma(\mathbf{N_1} \to \mathbf{l} + \mathbf{H}) \; - \; \Gamma(\mathbf{N_1} \to \overline{\mathbf{l}} + \mathbf{H}^*)}{\Gamma(\mathbf{N_1} \to \mathbf{l} + \mathbf{H}) \; + \; \Gamma(\mathbf{N_1} \to \overline{\mathbf{l}} + \mathbf{H}^*)} \\ &\propto \; \mathbf{M_1} \cdot \sin \left[ \arctan \left( \frac{\sqrt{\mathbf{R_\nu}} \; \mathbf{s_x^2 c_z^2 sin2\sigma}}{\mathbf{s_z^2} + \sqrt{\mathbf{R_\nu}} \; \mathbf{s_x^2 c_z^2 cos2\sigma}} \right) \right] \end{split}$$

 $Y_B \propto \epsilon_1 \sim 10^{-10}$  can be achieved, if  $M_1 \ge 10^{10}$  GeV (SM/SUSY) Remark: a testable model in which  $\theta_{13}$  determines  $Y_B$  etc.









#### **Comments and Concluding Remarks**

 $\star$  Another bonus to be achieved from a measurement of  $\theta_{13}$  is to understand sub-leading effects in neutrino oscillations & to probe or isolate much newer physics (e.g., sterile neutrinos)

- **M**ore theoretical reasons for  $\sin^2 2\theta_{13} > 0.01$  (M. Lindner 2003)
- A Models with the "anarchy" idea typically predict  $\sin^2 2\theta_{13}$  just below its current upper limit;
- ☆ Quantum corrections allow sin<sup>2</sup>2 θ <sub>13</sub> = 0 at the GUT scale to become sin<sup>2</sup>2 θ <sub>13</sub>>0.01 at low scales: nothing → something.



 $\theta_{13}$  has a role!



## Thank You



## Happy Chinese New Year

