Each process has two groups of methods which play an important role in tracking,
OR for more complex processes which implement 2 or 3 of those 3 methods: G4VContinuousDiscreteProcess, G4VRestDiscreteProcess, G4VRestContinuousProcess, G4VRestContinuousDiscreteProcess
The implementation of optical photon bulk absorption, G4OpAbsorption, is trivial in that the process merely kills the particle. The procedure requires the user to fill the relevant G4MaterialPropertiesTable with empirical data for the absorption length, using ABSLENGTH as the property key in the public method AddProperty. The absorption length is the average distance traveled by a photon before being absorpted by the medium; i.e. it is the mean free path returned by the GetMeanFreePath method.
[blyth@cms01 source]$ find . -name '*.cc' -exec grep -H 'ABSLENGTH' {} \;
./processes/optical/src/G4OpWLS.cc: GetProperty("WLSABSLENGTH");
./processes/optical/src/G4OpAbsorption.cc: GetProperty("ABSLENGTH");
101 G4VParticleChange*
102 G4OpAbsorption::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
103 {
104 aParticleChange.Initialize(aTrack);
105
106 aParticleChange.ProposeTrackStatus(fStopAndKill);
107
108 if (verboseLevel>0) {
109 G4cout << "\n** Photon absorbed! **" << G4endl;
110 }
111 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
112 }
118 G4double G4OpAbsorption::GetMeanFreePath(const G4Track& aTrack,
119 G4double ,
120 G4ForceCondition* )
121 {
122 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
123 const G4Material* aMaterial = aTrack.GetMaterial();
124
125 G4double thePhotonMomentum = aParticle->GetTotalMomentum();
126
127 G4MaterialPropertiesTable* aMaterialPropertyTable;
128 G4MaterialPropertyVector* AttenuationLengthVector;
129
130 G4double AttenuationLength = DBL_MAX;
131
132 aMaterialPropertyTable = aMaterial->GetMaterialPropertiesTable();
133
134 if ( aMaterialPropertyTable ) {
135 AttenuationLengthVector = aMaterialPropertyTable->
136 GetProperty("ABSLENGTH");
137 if ( AttenuationLengthVector ){
138 AttenuationLength = AttenuationLengthVector->
139 GetProperty (thePhotonMomentum);
(gdb) b 'G4VDiscreteProcess::PostStepGetPhysicalInteractionLength(G4Track const&, double, G4ForceCondition*)'
Breakpoint 1 at 0x68f34ed: file /data1/env/local/dyb/NuWa-trunk/../external/build/LCG/geant4.9.2.p01/source/processes/management/include/G4VDiscreteProcess.hh, line 137.
(gdb) bt
#0 G4VDiscreteProcess::PostStepGetPhysicalInteractionLength (this=0xd37b178, track=@0x10c8cd90, previousStepSize=0, condition=0xc481da0) at /data1/env/local/dyb/NuWa-trunk/../external/build/LCG/geant4.9.2.p01/source/processes/management/include/G4VDiscreteProcess.hh:137
#1 0x07247e95 in G4VProcess::PostStepGPIL (this=0xd37b178, track=@0x10c8cd90, previousStepSize=0, condition=0xc481da0) at /data1/env/local/dyb/NuWa-trunk/../external/build/LCG/geant4.9.2.p01/source/processes/management/include/G4VProcess.hh:464
#2 0x0724655a in G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:165
#3 0x07242e2c in G4SteppingManager::Stepping (this=0xc481c98) at src/G4SteppingManager.cc:181
#4 0x0725150a in G4TrackingManager::ProcessOneTrack (this=0xc481c70, apValueG4Track=0x10c8cd90) at src/G4TrackingManager.cc:126
#5 0xb666c24f in G4EventManager::DoProcessing (this=0xc481480, anEvent=0x10832350) at src/G4EventManager.cc:185
#6 0xb666c9e6 in G4EventManager::ProcessOneEvent (this=0xc481480, anEvent=0x10832350) at src/G4EventManager.cc:335
#7 0xb4e605e8 in GiGaRunManager::processTheEvent (this=0xc480c18) at ../src/component/GiGaRunManager.cpp:207
#8 0xb4e5f522 in GiGaRunManager::retrieveTheEvent (this=0xc480c18, event=@0xbfa6c9d8) at ../src/component/GiGaRunManager.cpp:158
#9 0xb4e3b64f in GiGa::retrieveTheEvent (this=0xc480220, event=@0xbfa6c9d8) at ../src/component/GiGa.cpp:469
#10 0xb4e38564 in GiGa::operator>> (this=0xc480220, event=@0xbfa6c9d8) at ../src/component/GiGaIGiGaSvc.cpp:73
#11 0xb4e362fa in GiGa::retrieveEvent (this=0xc480220, event=@0xbfa6c9d8) at ../src/component/GiGaIGiGaSvc.cpp:211
#12 0xb507fcd3 in DsPullEvent::execute (this=0xc473470) at ../src/DsPullEvent.cc:54
#13 0x046d6408 in Algorithm::sysExecute (this=0xc473470) at ../src/Lib/Algorithm.cpp:558
#14 0x03a61d4e in DybBaseAlg::sysExecute (this=0xc473470) at ../src/lib/DybBaseAlg.cc:53
#15 0x01cf0fd4 in GaudiSequencer::execute (this=0xbf36020) at ../src/lib/GaudiSequencer.cpp:100
#16 0x046d6408 in Algorithm::sysExecute (this=0xbf36020) at ../src/Lib/Algorithm.cpp:558
#17 0x01c8868f in GaudiAlgorithm::sysExecute (this=0xbf36020) at ../src/lib/GaudiAlgorithm.cpp:161
#18 0x0475241a in MinimalEventLoopMgr::executeEvent (this=0xbaf2f98) at ../src/Lib/MinimalEventLoopMgr.cpp:450
#19 0x03b20956 in DybEventLoopMgr::executeEvent (this=0xbaf2f98, par=0x0) at ../src/DybEventLoopMgr.cpp:125
#20 0x03b2118a in DybEventLoopMgr::nextEvent (this=0xbaf2f98, maxevt=10) at ../src/DybEventLoopMgr.cpp:188
#21 0x04750dbd in MinimalEventLoopMgr::executeRun (this=0xbaf2f98, maxevt=10) at ../src/Lib/MinimalEventLoopMgr.cpp:400
#22 0x08c086d9 in ApplicationMgr::executeRun (this=0xb7b9ad0, evtmax=10) at ../src/ApplicationMgr/ApplicationMgr.cpp:867
#23 0x0239af57 in method_3426 (retaddr=0xc5821b0, o=0xb7b9efc, arg=@0xb825c50) at ../i686-slc5-gcc41-dbg/dict/GaudiKernel/dictionary_dict.cpp:4375
#24 0x0030cadd in ROOT::Cintex::Method_stub_with_context (context=0xb825c48, result=0xc5cafe4, libp=0xc5cb03c) at cint/cintex/src/CINTFunctional.cxx:319
(gdb) frame 1
#1 0x07247e95 in G4VProcess::PostStepGPIL (this=0xd37b178, track=@0x10c8cd90, previousStepSize=0, condition=0xc481da0) at /data1/env/local/dyb/NuWa-trunk/../external/build/LCG/geant4.9.2.p01/source/processes/management/include/G4VProcess.hh:464
464 =PostStepGetPhysicalInteractionLength(track, previousStepSize, condition);
(gdb) list
459 inline G4double G4VProcess::PostStepGPIL( const G4Track& track,
460 G4double previousStepSize,
461 G4ForceCondition* condition )
462 {
463 G4double value
464 =PostStepGetPhysicalInteractionLength(track, previousStepSize, condition);
465 return thePILfactor*value;
466 }
131 inline G4double G4VDiscreteProcess::PostStepGetPhysicalInteractionLength(
132 const G4Track& track,
133 G4double previousStepSize,
134 G4ForceCondition* condition
135 )
136 {
137 if ( (previousStepSize < 0.0) || (theNumberOfInteractionLengthLeft<=0.0)) {
138 // beggining of tracking (or just after DoIt of this process)
139 ResetNumberOfInteractionLengthLeft();
140 } else if ( previousStepSize > 0.0) {
141 // subtract NumberOfInteractionLengthLeft
142 SubtractNumberOfInteractionLengthLeft(previousStepSize);
143 } else {
144 // zero step
145 // DO NOTHING
146 }
147
148 // condition is set to "Not Forced"
149 *condition = NotForced;
150
151 // get mean free path
152 currentInteractionLength = GetMeanFreePath(track, previousStepSize, condition);
153
154 G4double value;
155 if (currentInteractionLength <DBL_MAX) {
156 value = theNumberOfInteractionLengthLeft * currentInteractionLength;
157 } else {
158 value = DBL_MAX;
159 }
160 #ifdef G4VERBOSE
161 if (verboseLevel>1){
162 G4cout << "G4VDiscreteProcess::PostStepGetPhysicalInteractionLength ";
163 G4cout << "[ " << GetProcessName() << "]" <<G4endl;
164 track.GetDynamicParticle()->DumpInfo();
165 G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
166 G4cout << "InteractionLength= " << value/cm <<"[cm] " <<G4endl;
167 }
168 #endif
169 return value;
170 }
076 class G4VProcess
077 {
078 // A virtual class for physics process objects. It defines
079 // public methods which describe the behavior of a
080 // physics process.
081
...
147 virtual G4double PostStepGetPhysicalInteractionLength(
148 const G4Track& track,
149 G4double previousStepSize,
150 G4ForceCondition* condition
151 ) = 0;
152
153 // Returns the Step-size (actual length) which is allowed
154 // by "this" process. (for AtRestGetPhysicalInteractionLength,
155 // return value is Step-time) The NumberOfInteractionLengthLeft is
156 // recalculated by using previousStepSize and the Step-size is
157 // calucalted accoding to the resultant NumberOfInteractionLengthLeft.
158 // using NumberOfInteractionLengthLeft, which is recalculated at
159 // arguments
160 // const G4Track& track:
161 // reference to the current G4Track information
162 // G4double* previousStepSize:
163 // the Step-size (actual length) of the previous Step
164 // of this track. Negative calue indicates that
165 // NumberOfInteractionLengthLeft must be reset.
166 // the current physical interaction legth of this process
167 // G4ForceCondition* condition:
168 // the flag indicates DoIt of this process is forced
169 // to be called
170 // Forced: Corresponding DoIt is forced
171 // NotForced: Corresponding DoIt is called
172 // if the Step size of this Step is determined
173 // by this process
174 // !! AlongStepDoIt is always called !!
175 // G4double& currentMinimumStep:
176 // this value is used for transformation of
177 // true path length to geometrical path length
178
179 G4double GetCurrentInteractionLength() const;
180 // Returns currentInteractionLength
181
182 ////////// PIL factor ////////
183 void SetPILfactor(G4double value);
184 G4double GetPILfactor() const;
185 // Set/Get factor for PhysicsInteractionLength
186 // which is passed to G4SteppingManager for both AtRest and PostStep
187
188 // These three GPIL methods are used by Stepping Manager.
189 // They invoke virtual GPIL methods listed above.
190 // As for AtRest and PostStep the returned value is multipled by thePILfactor
191 //
...
287 protected:
288 G4VParticleChange* pParticleChange;
289 // The pointer to G4VParticleChange object
290 // which is modified and returned by address by the DoIt() method.
291 // This pointer should be set in each physics process
292 // after construction of derived class object.
293
294 G4ParticleChange aParticleChange;
295 // This object is kept for compatibility with old scheme
296 // This will be removed in future
297
298 G4double theNumberOfInteractionLengthLeft;
299 // The flight length left for the current tracking particle
300 // in unit of "Interaction length".
301
302 G4double currentInteractionLength;
303 // The InteractionLength in the current material
304
305 public: // with description
306 virtual void ResetNumberOfInteractionLengthLeft();
307 // reset (determine the value of)NumberOfInteractionLengthLeft
308
309 protected: // with description
310 virtual void SubtractNumberOfInteractionLengthLeft(
311 G4double previousStepSize
312 );
313 // subtract NumberOfInteractionLengthLeft by the value corresponding to
314 // previousStepSize
The differential cross section in Rayleigh scattering, sigma/omega , is proportional to cos2(theta), where theta is the polar angle of the new polarization vector with respect to the old polarization vector. The G4OpRayleigh scattering process samples this angle accordingly and then calculates the scattered photon’s new direction by requiring that it be perpendicular to the photon’s new polarization in such a way that the final direction, initial and final polarizations are all in one plane. This process thus depends on the particle’s polarization (spin). The photon’s polarization is a data member of the G4DynamicParticle class.
A photon which is not assigned a polarization at production, either via the SetPolarization method of the G4PrimaryParticle class, or indirectly with the SetParticlePolarization method of the G4ParticleGun class, may not be Rayleigh scattered. Optical photons produced by the G4Cerenkov process have inherently a polarization perpendicular to the cone’s surface at production. Scintillation photons have a random linear polarization perpendicular to their direction.
The process requires a G4MaterialPropertiesTable to be filled by the user with Rayleigh scattering length data. The Rayleigh scattering attenuation length is the average distance traveled by a photon before it is Rayleigh scattered in the medium and it is the distance returned by the GetMeanFreePath method. The G4OpRayleigh class provides a RayleighAttenuationLengthGenerator method which calculates the attenuation coefficient of a medium following the Einstein-Smoluchowski formula whose derivation requires the use of statistical mechanics, includes temperature, and depends on the isothermal compressibility of the medium. This generator is convenient when the Rayleigh attenuation length is not known from measurement but may be calculated from first principles using the above material constants. For a medium named Water and no Rayleigh scattering attenutation length specified by the user, the program automatically calls the RayleighAttenuationLengthGenerator which calculates it for 10 degrees Celsius liquid water.
Three categories of DoIt:
56 /////////////////////////////////////////////////
57 void G4SteppingManager::GetProcessNumber()
58 /////////////////////////////////////////////////
59 {
60 #ifdef debug
61 G4cout<<"G4SteppingManager::GetProcessNumber: is called track="<<fTrack<<G4endl;
62 #endif
63
64 G4ProcessManager* pm= fTrack->GetDefinition()->GetProcessManager();
65 if(!pm)
66 {
67 G4cout<<"G4SteppingManager::GetProcessNumber: ProcessManager=0 for particle="
68 <<fTrack->GetDefinition()->GetParticleName()<<", PDG_code="
69 <<fTrack->GetDefinition()->GetPDGEncoding()<<G4endl;
70 G4Exception("G4SteppingManager::GetProcessNumber: Process Manager is not found.");
71 }
72
73 // AtRestDoits
74 MAXofAtRestLoops = pm->GetAtRestProcessVector()->entries();
75 fAtRestDoItVector = pm->GetAtRestProcessVector(typeDoIt);
76 fAtRestGetPhysIntVector = pm->GetAtRestProcessVector(typeGPIL);
77 #ifdef debug
78 G4cout<<"G4SteppingManager::GetProcessNumber: #ofAtRest="<<MAXofAtRestLoops<<G4endl;
79 #endif
80
81 // AlongStepDoits
82 MAXofAlongStepLoops = pm->GetAlongStepProcessVector()->entries();
83 fAlongStepDoItVector = pm->GetAlongStepProcessVector(typeDoIt);
84 fAlongStepGetPhysIntVector = pm->GetAlongStepProcessVector(typeGPIL);
85 #ifdef debug
86 G4cout<<"G4SteppingManager::GetProcessNumber:#ofAlongStp="<<MAXofAlongStepLoops<<G4endl;
87 #endif
88
89 // PostStepDoits
90 MAXofPostStepLoops = pm->GetPostStepProcessVector()->entries();
91 fPostStepDoItVector = pm->GetPostStepProcessVector(typeDoIt);
92 fPostStepGetPhysIntVector = pm->GetPostStepProcessVector(typeGPIL);
93 #ifdef debug
94 G4cout<<"G4SteppingManager::GetProcessNumber: #ofPostStep="<<MAXofPostStepLoops<<G4endl;
95 #endif
96
97 if (SizeOfSelectedDoItVector<MAXofAtRestLoops ||
98 SizeOfSelectedDoItVector<MAXofAlongStepLoops ||
99 SizeOfSelectedDoItVector<MAXofPostStepLoops )
100 {
101 G4cout<<"G4SteppingManager::GetProcessNumber: SizeOfSelectedDoItVector="
102 <<SizeOfSelectedDoItVector<<" is smaller then one of MAXofAtRestLoops="
103 <<MAXofAtRestLoops<<" or MAXofAlongStepLoops="<<MAXofAlongStepLoops
104 <<" or MAXofPostStepLoops="<<MAXofPostStepLoops<<G4endl;
105 G4Exception("G4SteppingManager::GetProcessNumber: The array size is smaller than the actutal number of processes. Chnage G4SteppingManager.hh and recompile is needed.");
106 }
107 }
[blyth@cms01 source]$ find . -name '*.cc' -exec grep -H fPostStepDoItVector {} \;
./tracking/src/G4SteppingManager2.cc: fPostStepDoItVector = pm->GetPostStepProcessVector(typeDoIt);
./tracking/src/G4SteppingManager2.cc: fCurrentProcess = (*fPostStepDoItVector)[np];
./tracking/src/G4SteppingVerbose.cc: ptProcManager = (*fPostStepDoItVector)[np];
./tracking/src/G4SteppingVerbose.cc: ptProcManager = (*fPostStepDoItVector)[np];
./tracking/src/G4VSteppingVerbose.cc: fPostStepDoItVector = fManager->GetfPostStepDoItVector();
[blyth@cms01 source]$
From the G4Step, energies and times feed into creating hits.
For OP, wavelength is more relevant than energy. From http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/physicsProcess.html
- Optical photons are generated in GEANT4 without energy conservation and their energy must therefore not be tallied as part of the energy balance of an event.
318 bool DsPmtSensDet::ProcessHits(G4Step* step,
319 G4TouchableHistory* /*history*/)
320 {
321 //if (!step) return false; just crash for now if not defined
322
323 // Find out what detector we are in (ADx, IWS or OWS)
324 G4StepPoint* preStepPoint = step->GetPreStepPoint();
325
326 double energyDep = step->GetTotalEnergyDeposit();
...
...
...
434 double wavelength = CLHEP::twopi*CLHEP::hbarc/energyDep;
...
...
...
459 DayaBay::SimPmtHit* sphit = new DayaBay::SimPmtHit();
460
461 // base hit
462
463 // Time since event created
464 sphit->setHitTime(preStepPoint->GetGlobalTime());
465
466 //#include "G4NavigationHistory.hh"
467
468 const G4AffineTransform& trans = hist->GetHistory()->GetTopTransform();
469 const G4ThreeVector& global_pos = preStepPoint->GetPosition();
470 G4ThreeVector pos = trans.TransformPoint(global_pos);
471 sphit->setLocalPos(pos);
472 sphit->setSensDetId(pmtid);
473
474 // pmt hit
475 // sphit->setDir(...); // for now
476 G4ThreeVector pol = trans.TransformAxis(track->GetPolarization());
477 pol = pol.unit();
478 G4ThreeVector dir = trans.TransformAxis(track->GetMomentum());
479 dir = dir.unit();
480 sphit->setPol(pol);
481 sphit->setDir(dir);
482 sphit->setWavelength(wavelength);
483 sphit->setType(0);
484 // G4cerr<<"PMT: set hit weight "<<weight<<G4endl; //gonchar
485 sphit->setWeight(weight);
[blyth@cms01 source]$ find . -name '*.cc' -exec grep -H SetGlobalTime {} \;
./track/src/G4ParticleChangeForDecay.cc: pPostStepPoint->SetGlobalTime( theTimeChange );
./track/src/G4ParticleChange.cc: pPostStepPoint->SetGlobalTime( theTimeChange );
./track/src/G4ParticleChange.cc: pPostStepPoint->SetGlobalTime( theTimeChange );
./processes/hadronic/models/lll_fission/src/G4FissionLibrary.cc:// it->SetGlobalTime(getnage_(&i)*second);
./processes/hadronic/models/lll_fission/src/G4FissionLibrary.cc:// it->SetGlobalTime(getpage_(&i)*second);
./processes/parameterisation/src/G4FastStep.cc: pPostStepPoint->SetGlobalTime( theTimeChange );
./processes/parameterisation/src/G4FastStep.cc: pPostStepPoint->SetGlobalTime( theTimeChange );
[blyth@cms01 source]$
[blyth@cms01 source]$ find . -name '*.cc' -exec grep -H ProposeGlobalTime {} \;
./processes/hadronic/models/radioactive_decay/src/G4RadioactiveDecay.cc: fParticleChangeForRadDecay.ProposeGlobalTime( finalGlobalTime );
./processes/transportation/src/G4Transportation.cc: fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ;
./processes/transportation/src/G4CoupledTransportation.cc: fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ;
./processes/decay/src/G4UnknownDecay.cc: fParticleChangeForDecay.ProposeGlobalTime( finalGlobalTime );
./processes/decay/src/G4Decay.cc: fParticleChangeForDecay.ProposeGlobalTime( finalGlobalTime );
[blyth@cms01 source]$
For OP, what determines the GlobalTime is
So question becomes: where is stepLength distribution implemented ? Each process provides a MeanFreePath, where is the dice rolled ?
450 G4VParticleChange* G4Transportation::AlongStepDoIt( const G4Track& track,
451 const G4Step& stepData )
452 {
453 static G4int noCalls=0;
454 static const G4ParticleDefinition* fOpticalPhoton =
455 G4ParticleTable::GetParticleTable()->FindParticle("opticalphoton");
456
457 noCalls++;
458
459 fParticleChange.Initialize(track) ;
460
461 // Code for specific process
462 //
463 fParticleChange.ProposePosition(fTransportEndPosition) ;
464 fParticleChange.ProposeMomentumDirection(fTransportEndMomentumDir) ;
465 fParticleChange.ProposeEnergy(fTransportEndKineticEnergy) ;
466 fParticleChange.SetMomentumChanged(fMomentumChanged) ;
467
468 fParticleChange.ProposePolarization(fTransportEndSpin);
469
470 G4double deltaTime = 0.0 ;
471
472 // Calculate Lab Time of Flight (ONLY if field Equations used it!)
473 // G4double endTime = fCandidateEndGlobalTime;
474 // G4double delta_time = endTime - startTime;
475
476 G4double startTime = track.GetGlobalTime() ;
477
478 if (!fEndGlobalTimeComputed)
479 {
480 // The time was not integrated .. make the best estimate possible
481 //
482 G4double finalVelocity = track.GetVelocity() ;
483 G4double initialVelocity = stepData.GetPreStepPoint()->GetVelocity() ;
484 G4double stepLength = track.GetStepLength() ;
485
486 deltaTime= 0.0; // in case initialVelocity = 0
487 const G4DynamicParticle* fpDynamicParticle = track.GetDynamicParticle();
488 if (fpDynamicParticle->GetDefinition()== fOpticalPhoton)
489 {
490 // A photon is in the medium of the final point
491 // during the step, so it has the final velocity.
492 deltaTime = stepLength/finalVelocity ;
493 }
494 else if (finalVelocity > 0.0)
495 {
496 G4double meanInverseVelocity ;
497 // deltaTime = stepLength/finalVelocity ;
498 meanInverseVelocity = 0.5
499 * ( 1.0 / initialVelocity + 1.0 / finalVelocity ) ;
500 deltaTime = stepLength * meanInverseVelocity ;
501 }
502 else if( initialVelocity > 0.0 )
503 {
504 deltaTime = stepLength/initialVelocity ;
505 }
506 fCandidateEndGlobalTime = startTime + deltaTime ;
507 }
508 else
509 {
510 deltaTime = fCandidateEndGlobalTime - startTime ;
511 }
512
513 fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ;
[blyth@cms01 source]$ find . -name '*.cc' -exec grep -H DefinePhysicalStepLength {} \;
./tracking/src/G4SteppingManager.cc: DefinePhysicalStepLength();
./tracking/src/G4SteppingManager2.cc: void G4SteppingManager::DefinePhysicalStepLength()
./tracking/src/G4SteppingManager2.cc:} // void G4SteppingManager::DefinePhysicalStepLength() //
./tracking/src/G4SteppingVerbose.cc: G4cout << G4endl << " >>DefinePhysicalStepLength (List of proposed StepLengths): " << G4endl;
118 void G4SteppingManager::DefinePhysicalStepLength()
119 /////////////////////////////////////////////////////////
120 {
121
122 // ReSet the counter etc.
123 PhysicalStep = DBL_MAX; // Initialize by a huge number
124 physIntLength = DBL_MAX; // Initialize by a huge number
125 #ifdef G4VERBOSE
126 // !!!!! Verbose
127 if(verboseLevel>0) fVerbose->DPSLStarted();
128 #endif
129
130 // Obtain the user defined maximum allowed Step in the volume
131 // 1997.12.13 adds argument for GetMaxAllowedStep by K.Kurashige
132 // 2004.01.20 This block will be removed by Geant4 7.0
133 // G4UserLimits* ul= fCurrentVolume->GetLogicalVolume()->GetUserLimits();
134 // if (ul) {
135 // physIntLength = ul->GetMaxAllowedStep(*fTrack);
136 //#ifdef G4VERBOSE
137 // // !!!!! Verbose
138 // if(verboseLevel>0) fVerbose->DPSLUserLimit();
139 //#endif
140 // }
141 //
142 // if(physIntLength < PhysicalStep ){
143 // PhysicalStep = physIntLength;
144 // fStepStatus = fUserDefinedLimit;
145 // fStep->GetPostStepPoint()
146 // ->SetProcessDefinedStep(NULL);
147 // // Take note that the process pointer is 'NULL' if the Step
148 // // is defined by the user defined limit.
149 // }
150 // 2004.01.20 This block will be removed by Geant4 7.0
151
152 // GPIL for PostStep
153 fPostStepDoItProcTriggered = MAXofPostStepLoops;
154
155 for(size_t np=0; np < MAXofPostStepLoops; np++){
156 fCurrentProcess = (*fPostStepGetPhysIntVector)(np);
157 if (fCurrentProcess== NULL) {
158 (*fSelectedPostStepDoItVector)[np] = InActivated;
159 continue;
160 } // NULL means the process is inactivated by a user on fly.
161
162 physIntLength = fCurrentProcess->
163 PostStepGPIL( *fTrack,
164 fPreviousStepSize,
165 &fCondition );
166 #ifdef G4VERBOSE
167 // !!!!! Verbose
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
169 #endif
170
171 switch (fCondition) {
172 case ExclusivelyForced:
173 (*fSelectedPostStepDoItVector)[np] = ExclusivelyForced;
174 fStepStatus = fExclusivelyForcedProc;
175 fStep->GetPostStepPoint()
176 ->SetProcessDefinedStep(fCurrentProcess);
177 break;
178 case Conditionally:
179 (*fSelectedPostStepDoItVector)[np] = Conditionally;
180 break;
181 case Forced:
(gdb) p fCurrentProcess->GetProcessName()
$9 = (const G4String &) @0xc094a20: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xc094c04 "Transportation"}}, <No data fields>}
(gdb) c
Continuing.
1 -1.43e+04 -8e+05 -1.14e+03 2.31e-06 0 3.3e+03 3.3e+03 /dd/Geometry/Sites/lvNearHallTop#pvNearRPCRoof Transportation
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$10 = (const G4String &) @0xce5a190: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xc484aec "Scintillation"}}, <No data fields>}
(gdb) c
Continuing.
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$11 = (const G4String &) @0xd37bc80: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xd379024 "fast_sim_man"}}, <No data fields>}
(gdb) c
Continuing.
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$12 = (const G4String &) @0xd37b258: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xd37b164 "OpBoundary"}}, <No data fields>}
(gdb) c
Continuing.
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$13 = (const G4String &) @0xd3782f8: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xce5eb2c "OpRayleigh"}}, <No data fields>}
(gdb) c
Continuing.
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$14 = (const G4String &) @0xd3779e8: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xce6044c "OpAbsorption"}}, <No data fields>}
(gdb) c
Continuing.
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
(gdb) p fCurrentProcess->GetProcessName()
$15 = (const G4String &) @0xc094a20: {<std::basic_string<char,std::char_traits<char>,std::allocator<char> >> = {static npos = 4294967295, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>},
_M_p = 0xc094c04 "Transportation"}}, <No data fields>}
(gdb) c
Continuing.
2 -1.45e+04 -8e+05 -1.31e+03 2.31e-06 0 208 3.51e+03 /dd/Geometry/RPC/lvNearRPCRoof#pvNearUnSlopModArray#pvNearUnSlopModOne:3#pvNearUnSlopMod:2#pvNearSlopModUnit Transportation
Step# X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
0 -1.23e+04 -8e+05 1.56e+03 5.77e-06 0 0 0 /dd/Geometry/Sites/lvNearSiteRock#pvNearHallTop initStep
Breakpoint 2, G4SteppingManager::DefinePhysicalStepLength (this=0xc481c98) at src/G4SteppingManager2.cc:168
168 if(verboseLevel>0) fVerbose->DPSLPostStep();
The interaction of the tracking category with the physics processes is done in two ways. First each process can limit the step length through one of its three GetPhysicalInteractionLength() methods, AtRest, AlongStep, or PostStep. Second, for the selected processes the DoIt (AtRest, AlongStep or PostStep) methods are invoked. All this interaction is managed by the Stepping method of G4SteppingManager. To calculate the step length, the DefinePhysicalStepLength() method is called. The flow of this method is the following:
Obtain maximum allowed Step in the volume define by the user through G4UserLimits.
The AlongStepGetPhysicalInteractionLength method of all active processes is called. Each process returns a step length and the minimum of these and the This method also returns a fGPILSelection flag, to indicate if the process is the selected one can be is forced or not.