Propagate ========== python side ------------- :: 096 @profile_if_possible 097 def propagate(self, gpu_geometry, rng_states, nthreads_per_block=64, 098 max_blocks=1024, max_steps=10, use_weights=False, 099 scatter_first=0): ... 110 nphotons = self.pos.size 111 step = 0 112 input_queue = np.empty(shape=nphotons+1, dtype=np.uint32) 113 input_queue[0] = 0 114 # Order photons initially in the queue to put the clones next to each other 115 for copy in xrange(self.ncopies): 116 input_queue[1+copy::self.ncopies] = np.arange(self.true_nphotons, dtype=np.uint32) + copy * self.true_nphotons 117 input_queue_gpu = ga.to_gpu(input_queue) 118 output_queue = np.zeros(shape=nphotons+1, dtype=np.uint32) 119 output_queue[0] = 1 120 output_queue_gpu = ga.to_gpu(output_queue) 121 122 while step < max_steps: 123 # Just finish the rest of the steps if the # of photons is low 124 if nphotons < nthreads_per_block * 16 * 8 or use_weights: 125 nsteps = max_steps - step 126 else: 127 nsteps = 1 128 129 for first_photon, photons_this_round, blocks in \ 130 chunk_iterator(nphotons, nthreads_per_block, max_blocks): 131 self.gpu_funcs.propagate( np.int32(first_photon), np.int32(photons_this_round), input_queue_gpu[1:], output_queue_gpu, rng_states, self.pos, self.dir, self.wavelengths, self.pol, self.t, self.flags, self.last_hit_triangles, self.weights, np.int32(nsteps), ## CAUTION thats max_steps on cuda side np.int32(use_weights), np.int32(scatter_first), gpu_geometry.gpudata, block=(nthreads_per_block,1,1), grid=(blocks, 1)) 132 133 step += nsteps 134 scatter_first = 0 # Only allow non-zero in first pass 135 136 if step < max_steps: 137 temp = input_queue_gpu 138 input_queue_gpu = output_queue_gpu 139 output_queue_gpu = temp 140 # Assign with a numpy array of length 1 to silence 141 # warning from PyCUDA about setting array with different strides/storage orders. 142 output_queue_gpu[:1].set(np.ones(shape=1, dtype=np.uint32)) 143 nphotons = input_queue_gpu[:1].get()[0] - 1 /// stick the surviving propagated photons in output_queue into input_queue 144 145 if ga.max(self.flags).get() & (1 << 31): 146 print >>sys.stderr, "WARNING: ABORTED PHOTONS" 147 cuda.Context.get_current().synchronize() cuda entry points ------------------- :: simon:cuda blyth$ grep -l blockIdx *.* bvh.cu daq.cu hybrid_render.cu mesh.h pdf.cu propagate.cu random.h render.cu tools.cu transform.cu cuda propagate ---------------- Entry point is **propagate**, communication via numpy arrays curtesy of pycuda. * **self.flags** on corresponds to **histories** array * **id** identifies the CUDA thread, corresponding to a single photon * photon parameters indexed into the arrays with `photon_id` :: 112 __global__ void 113 propagate(int first_photon, int nthreads, unsigned int *input_queue, 114 unsigned int *output_queue, curandState *rng_states, 115 float3 *positions, float3 *directions, 116 float *wavelengths, float3 *polarizations, 117 float *times, unsigned int *histories, 118 int *last_hit_triangles, float *weights, 119 int max_steps, int use_weights, int scatter_first, 120 Geometry *g) 121 { 122 __shared__ Geometry sg; 123 124 if (threadIdx.x == 0) 125 sg = *g; // // shared geometry between threads // 126 127 __syncthreads(); 128 129 int id = blockIdx.x*blockDim.x + threadIdx.x; // // id points at the single photon to propagate in this parallel thread // 130 131 if (id >= nthreads) 132 return; 133 134 g = &sg; 135 136 curandState rng = rng_states[id]; 137 138 int photon_id = input_queue[first_photon + id]; 139 140 Photon p; 141 p.position = positions[photon_id]; 142 p.direction = directions[photon_id]; 143 p.direction /= norm(p.direction); 144 p.polarization = polarizations[photon_id]; 145 p.polarization /= norm(p.polarization); 146 p.wavelength = wavelengths[photon_id]; 147 p.time = times[photon_id]; 148 p.last_hit_triangle = last_hit_triangles[photon_id]; 149 p.history = histories[photon_id]; 150 p.weight = weights[photon_id]; 151 152 if (p.history & (NO_HIT | BULK_ABSORB | SURFACE_DETECT | SURFACE_ABSORB | NAN_ABORT)) 153 return; 154 155 State s; 156 157 int steps = 0; 158 while (steps < max_steps) { 159 steps++; 160 161 int command; 162 163 // check for NaN and fail 164 if (isnan(p.direction.x*p.direction.y*p.direction.z*p.position.x*p.position.y*p.position.z)) { 165 p.history |= NO_HIT | NAN_ABORT; 166 break; 167 } 168 169 fill_state(s, p, g); 170 171 if (p.last_hit_triangle == -1) 172 break; 173 174 command = propagate_to_boundary(p, s, rng, use_weights, scatter_first); // // propagate_* only changes p (?) refering to state s // 175 scatter_first = 0; // Only use the scatter_first value once 176 177 if (command == BREAK) 178 break; 179 180 if (command == CONTINUE) 181 continue; 182 183 if (s.surface_index != -1) { 184 command = propagate_at_surface(p, s, rng, g, use_weights); 185 186 if (command == BREAK) 187 break; 188 189 if (command == CONTINUE) 190 continue; 191 } 192 193 propagate_at_boundary(p, s, rng); 194 195 } // while (steps < max_steps) 196 197 rng_states[id] = rng; 198 positions[photon_id] = p.position; 199 directions[photon_id] = p.direction; 200 polarizations[photon_id] = p.polarization; 201 wavelengths[photon_id] = p.wavelength; 202 times[photon_id] = p.time; 203 histories[photon_id] = p.history; 204 last_hit_triangles[photon_id] = p.last_hit_triangle; 205 weights[photon_id] = p.weight; 206 207 // Not done, put photon in output queue 208 if ((p.history & (NO_HIT | BULK_ABSORB | SURFACE_DETECT | SURFACE_ABSORB | NAN_ABORT)) == 0) { // // the photon lives on thanks to // RAYLEIGH_SCATTER REFLECT_DIFFUSE REFLECT_SPECULAR SURFACE_REEMIT SURFACE_TRANSMIT BULK_REEMIT // // 209 int out_idx = atomicAdd(output_queue, 1); 210 output_queue[out_idx] = photon_id; // // http://supercomputingblog.com/cuda/cuda-tutorial-4-atomic-operations/ // // This atomicAdd function can be called within a kernel. When a thread executes this operation, a memory address is read, // has the value of val added to it, and the result is written back to memory. // The original value of the memory at location ?address? is returned to the thread. // 211 } 212 } // propagate `chroma/cuda/photon.h` ~~~~~~~~~~~~~~~~~~~~~~~~ :: 584 __device__ int 585 propagate_at_surface(Photon &p, State &s, curandState &rng, Geometry *geometry, 586 bool use_weights=false) 587 { 588 Surface *surface = geometry->surfaces[s.surface_index]; 589 590 if (surface->model == SURFACE_COMPLEX) 591 return propagate_complex(p, s, rng, surface, use_weights); 592 else if (surface->model == SURFACE_WLS) 593 return propagate_at_wls(p, s, rng, surface, use_weights); 594 else { 595 // use default surface model: do a combination of specular and 596 // diffuse reflection, detection, and absorption based on relative 597 // probabilties * `chroma/doc/source/surface.rst`