$heta_{13}$ Quest at Daya Bay Measurement of $heta_{13}$ Mixing Parameter

Viktor Pěč on behalf of Daya Bay Experiment Collaboration

Charles University in Prague

Nu HoRlzons III, February 8-10, 2010, Allahabad, India

- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- Systematic Uncertainties
- Backgrounds
- 6 Sensitivity
- Status and Plans

- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Backgrounds
- 6 Sensitivity
- Status and Plans

Accelerator ν

PMNS Matrix

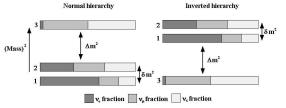
$$\underbrace{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}}_{\mbox{\neq}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix}}_{\mbox{θ_{12}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{23}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{12}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{12}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mbox{θ_{13}}} \times \underbrace{ \begin{pmatrix} \cos\theta_{13} & \sin\theta_{12} & \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} & \cos\theta_{12} \\ -\sin\theta_{12} & \cos\theta$$

Future accelerator ν

- Meassure θ_{13} with sensitivity of $\sin^2 2\theta_{13} < 0.01^1$ at 90% C.L.
- Currently known to be $\sin^2 2\theta_{13} < 0.19$ at 90% C.L. from the Chooz Reactor Neutrino Experiment in France

Long-baseline Reactor ν

 $^{^{1}\}mathrm{sin}^{2}\, heta_{13} < 0.0025$ and $heta_{13} < 3^{\circ}$



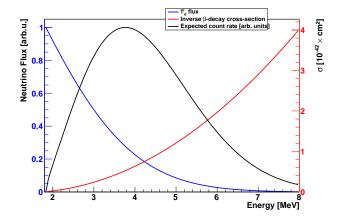
Importance

- ullet Step to complete basic model of u oscillations
- Open gate to go further
- Is it possible to measure CP violation from neutrino oscillations:

$$P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \sin(2\theta_{12})\sin(2\theta_{23})\cos^{2}(\theta_{13})\sin(2\theta_{13})\sin\delta$$

• Mass hierarchy: $m_2 < m_3$ or $m_2 > m_3$

• Help discriminate among theoretical models of mixing matrix

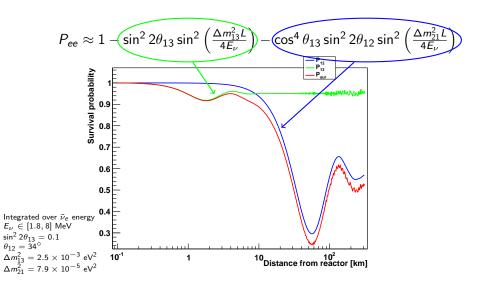


Neutrino Oscillations

大亞灣

Expected Count Rate in Detector

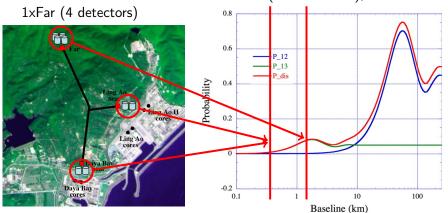
$$P_{\rm ee}\approx 1-\sin^22\theta_{13}\sin^2\left(\frac{\Delta m_{13}^2L}{4E_\nu}\right)-\cos^4\theta_{13}\sin^22\theta_{12}\sin^2\left(\frac{\Delta m_{21}^2L}{4E_\nu}\right)$$



Neutrino Oscillations

Expected Count Rate in Detector

- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Background
- 6 Sensitivity
- Status and Plans



On Site Layout

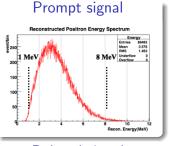
• 3 sites at different distances — 2x Near (2x2 detectors),

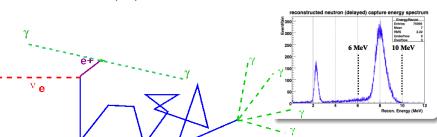
Distance from detectors to reactor cores in meters

	Experimental site			
Reactors	DyB	LA	Far	
DayaBay	363	1348	1986	
LingAo I	857	481	1618	
LingAo II	1307	526	1613	
Overburden	98	112	355	

Reactor Thermal Output: 11.6 GW now, 17.4 GW in 2011

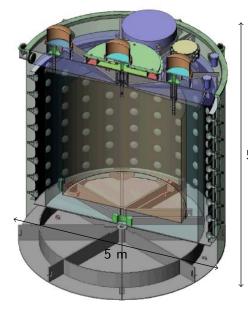
- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Background
- 6 Sensitivity
- Status and Plans

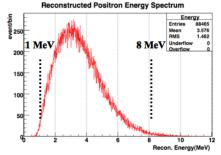

$\bar{\nu}_e$ Detection Method


ullet Inverse eta-decay :

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Trigger on 2-fold coincidence:
 - ullet Prompt signal from e^+
 - Delayed signal from n capture on Gadolinium $\approx 30 \mu {
 m s}$
- Detector with Gd doped Liquid Scintillator (LS)





- Cylindrical 3-Zone Structure separated by acrylic vessels
 - Target: Inner 20t GdLS (0.1% of Gd, d=3m)
 - γ-catcher: Mid 20t LS (d=4m, ≈42cm thick)
- 5 m Oil Buffer: Outer 40t mineral oil (d=5m, \approx 49cm thick)
 - 192 8-inch PMTs
 - $12\%/\sqrt{E(\text{MeV})}$ energy resolution
 - Reflectors on top and bottom

350		EnergyRecon
350_	4	Entries 75959
E		Mean 7
300	and the same of th	RMS 2.22
500	10	Underflow 0
E		Overflow 3
250	6 MeV	10 MeV
200	1 1	1 :
E		\
150		
		1
100		

Signal/day/module
840
760
90

- Positron energy cuts at 1 – 8 MeV
- Neutron capture energy cut at 6 MeV
- \bullet Time cut $0.3-200\mu s$

- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- Systematic Uncertainties
- Background
- 6 Sensitivity
- Status and Plans

$$\frac{N_f}{N_n}(E) = \frac{N_{p,f}}{N_{p,n}} \left(\frac{L_n}{L_f}\right)^2 \frac{\epsilon_f}{\epsilon_n} \frac{P(E, L_f)}{P(E, L_n)}$$

- Expected ratio of measured events for particular energy at Near and Far site
- Number of protons in target careful measurements during filling
- Neutrino flux at distance $L \propto 1/L^2$
- Detector detection efficiencies intensive calibration program
- Survival probabilities sign of oscillation

Systematic Uncertainties

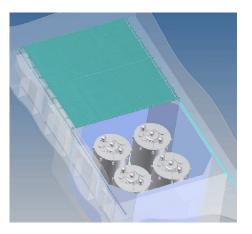
Detector related uncertainty

	Source of uncertainty		Detector Systematic Uncertainties		
			Conservative	Goal	
	#	protons	0.3	0.1	
		Energy cuts	0.2	0.1	
		Time cuts	0.1	0.03	
,	Detector	H/Gd ratio	0.1	0.1	
	Efficiency	n multiplicity	0.05	0.05	
		Trigger	0.01	0.01	
		Live time	< 0.01	< 0.01	
	Total		0.38%	0.18%	

Reactor related uncertainty

Number	Power	Location	Total	
of cores				
4	0.035%	0.08%	0.087%	
6	0.097%	0.08%	0.126%	

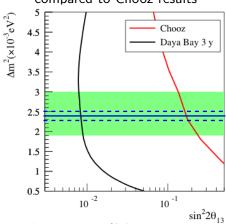
- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Backgrounds
- 6 Sensitivity
- Status and Plans


- Accidental coincidence of uncorrelated signals natural radioactivity
- Correlated signals from fast neutrons spallation processes of muons in surrounding rock
- β -delayed neutron decays of $^9{\rm Li}$ and $^8{\rm He}$ products of muonic showers

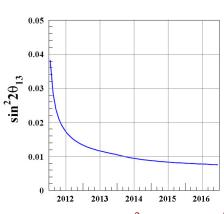
Background subtraction uncertainties

	DYB	LA	Far
Fast n/signal	0.1%	0.1%	0.1%
⁹ Li, ⁸ He/signal	0.3%	0.2%	0.2%
Accidentals/signal	<0.2%	<0.2%	<0.1%

- Multiple muon veto detectors
- Water Čerenkov
 - ADs submerged in water, provide ≥ 2.5m shielding against radioactivity
 - Inner/Outer regions optically separated
 - 8-inch PMTs on frames (289/near, 384/far site)
- RPC—Resistive Plate Chamber
 - 4 layers in modules
 - Layer of modules covers water pool
 - Provides independent veto system
- Combined efficiency of both systems > 99.5%



- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Background
- 6 Sensitivity
- Status and Plans



 90% C.L. after 3 years of data taking assuming baseline systematics, compared to Chooz results

 $\Delta \mathrm{m}^2 = 0.0025~\mathrm{eV}^2$

- Motivation
- 2 Location and Onsite Layout
- 3 Detection Method
- 4 Systematic Uncertainties
- Backgrounds
- 6 Sensitivity
- Status and Plans

Excavation continues, more than 3,000 m of tunnels excavated

2 experimental halls excavated

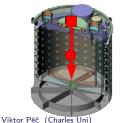
First AD being assembled

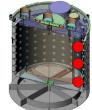
- October 2007: Ground breaking
- March 2009: Surface assembly building occupancy
- Upcoming months: Commissioning first AD Dry run
- 2010: Daya Bay Near Hall ready for data
- 2011: Far Hall ready for data

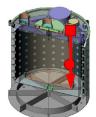
Collaboration

Region	Institutions	Members
China	14	109
Czech	1	4
Hong Kong	2	16
Russia	2	5
Taiwan	3	13
USA	16	96
Sum	38	243

Detector Dry Run

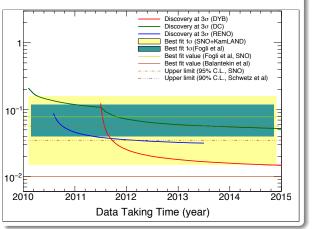



Purpose


- PMT readout and system integration
- Coordination of calibration and DAQ
- PMT measurements
 - Timing
 - Gain
 - Peak-to-valley ratio
 - Relative efficiency

Implementation

- Assembled detector without filling (no scintillator, no mineral oil)
- Use LED sources


The Daya Bay Experiment

3σ Discovery

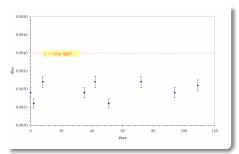
大亞灣

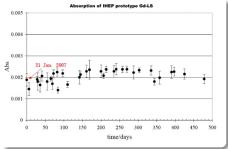
GLoBES models

- Analysis by C. Lewis, B. Littlejohn, M. McFarlane, W. Wang, K. Heeger from University of Wisconsin
- Models for RENO and Double Chooz from GLoBES website
- Starting dates from Huber et al (arXive: 0907.1896)

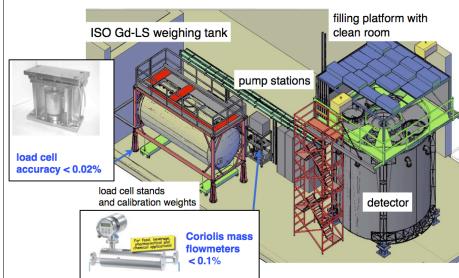
	DYB site	LA site	Far site
Vertical overburden (m)	98	112	355
Vertical overburden (m.w.e.)	255	291	910
Muon Flux (Hz/m2)	1.16	0.73	0.041
Muon Mean Energy (GeV)	55	60	138

Systematic Uncertainties




Source of uncertainty		Chooz	Da	Daya Bay (relative)			
		(absolute)	Conservative	Goal	Goal w/Swapping		
# protons		0.8	0.3	0.1	0.006		
Detector	Energy cuts	0.8	0.2	0.1	0.1		
Efficiency	Position cuts	0.32	0.0	0.0	0.0		
	Time cuts H/Gd ratio		0.1	0.03	0.03		
			0.1	0.1	0.0		
	n multiplicity	0.5	0.05	0.05	0.05		
	Trigger	0	0.01	0.01	0.01		
	Live time	0	< 0.01	< 0.01	< 0.01		
Total und	ertainty	1.7%	0.38%	0.18%	0.12%		
(detector-	(detector-related)						

Gd Liquid Scintilator Stability



- Weekly deployment of radioactive sources
 - β + ⁶⁸Ge
 - neutrons Am/Pu-C
 - $\gamma {}^{60}\text{Co}, {}^{137}\text{Cs}$
- LED diffuser balls
 - monitor optical properties of materials
 - PMT gains and timing
 - Electronics performance

AD Filling and Target Mass Measurement

Huber et al., arxiv 0907.1896

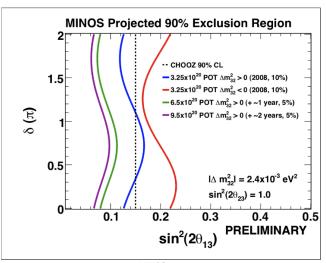

Setup	t_{ν} [yr]	$t_{\bar{\nu}} [yr]$	P_{Th} or P_{Target}	L [km]	Detector technology	$m_{ m Det}$
Double Chooz	-	3	8.6 GW	1.05	Liquid scintillator	8.3 t
Daya Bay	-	3	$17.4~\mathrm{GW}$	1.7	Liquid scintillator	80 t
RENO	-	3	$16.4~\mathrm{GW}$	1.4	Liquid scintillator	15.4 t
T2K	5	-	0.75 MW	295	Water Cerenkov	22.5 kt
$NO\nu A$	3	3	$0.7~\mathrm{MW}$	810	TASD	$15~\mathrm{kt}$

Table 1: Summary of the standard setups at their nominal luminosities.

MINOS ν_e appearance observation

From MINOS web page.