

Daya Bay Reactor Neutrino Experiment

Precise Measurement of θ_{13}

Bob McKeown (for the Daya Bay collaboration)
California Institute of Technology

DOANOW, Honolulu, Hawaii, March 24, 2007

Outline

- Physics Motivation
- Requirements
- The Daya Bay experiment
 - Layout
 - Detector design
 - Backgrounds
 - Systematic errors and Sensitivity
- Schedule
- Summary

Physics Motivation

Weak eigenstate ≠ mass eigenstate ⇒

Pontecorvo-Maki-Nakagawa-Sakata Matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Parametrize the PMNS matrix as:

$$\begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{12} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} e^{i\delta_{1}} & 0 & 0 \\ 0 & e^{i\delta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solar, reactor

reactor and accelerator Atmospheric, accelerator 0νββ

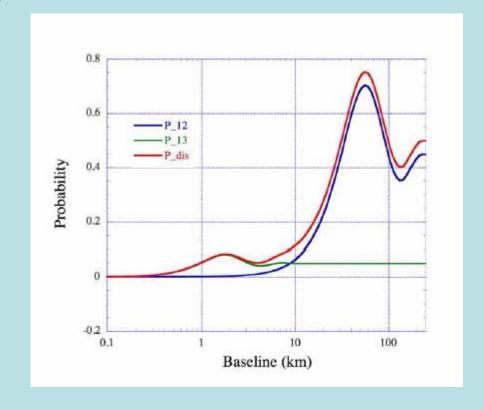
$$\theta_{12} = ~32^{\circ}$$

$$\theta_{13} = ?$$

$$\theta_{23} \sim 45^{\circ}$$

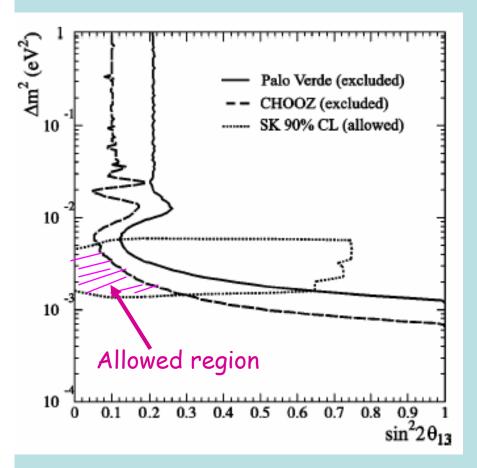
 θ_{13} is the gateway of CP violation in lepton sector!

Measuring $sin^2 2\theta_{13}$ at reactors

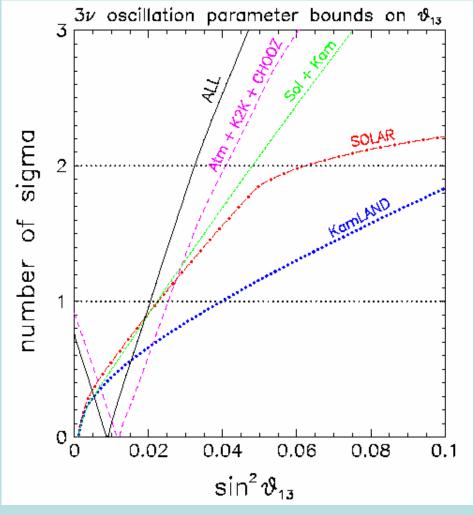

- · Clean signal, no cross talk with δ and matter effects
- Relatively cheap compared to accelerator based experiments
- · Provides the direction to the future of neutrino physics
- · Rapidly deployment possible

at reactors:

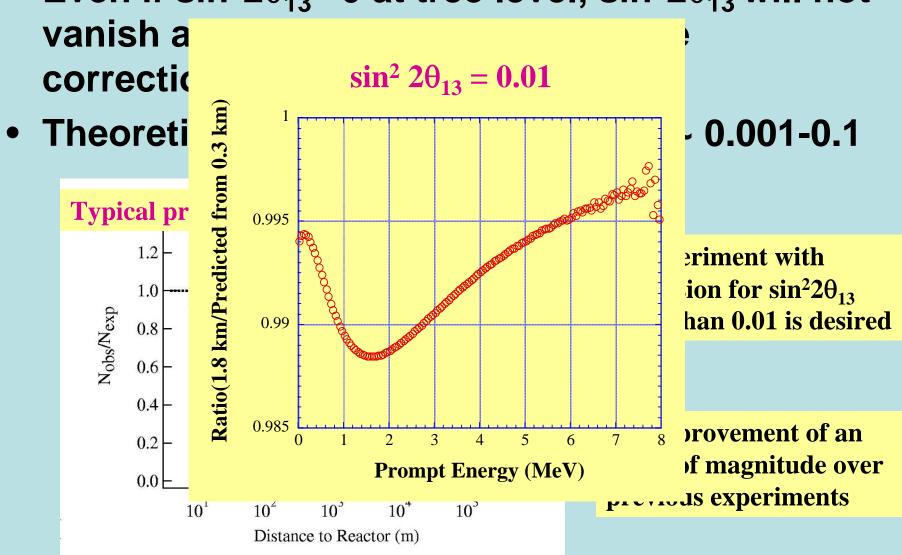
$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.27\Delta m_{13}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 L/E)$$


at LBL accelerators:

$$\begin{split} P_{\mu e} \approx sin^2\theta_{23}sin^22\theta_{13}sin^2(1.27\Delta m^2_{23}L/E) \ + \\ cos^2\theta_{23}sin^22\theta_{12}sin^2(1.27\Delta m^2_{12}L/E) \ - \\ A(\rho) \bullet cos^2\theta_{13}sin\theta_{13} \bullet sin(\delta) \end{split}$$



Current Knowledge of θ_{13}


Direct search PRD 62, 072002

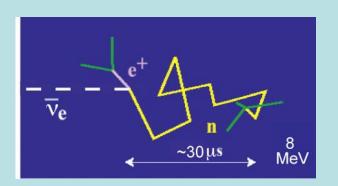
Global fit fogli etal., hep-ph/0506083

- No good reason(symmetry) for $\sin^2 2\theta_{13} = 0$
- Even if $\sin^2 2\theta_{13} = 0$ at tree level, $\sin^2 2\theta_{13}$ will not

How to reach 1% precision?

- Increase statistics:
 - Utilize larger target mass, hence larger detectors
- Reduce systematic uncertainties:
 - Reactor-related:
 - Optimize baseline for best sensitivity and smaller residual errors
 - Near and far detectors to minimize reactor-related errors
 - Detector-related:
 - Use "Identical" pairs of detectors to do relative measurement
 - Comprehensive program in calibration/monitoring of detectors
 - Interchange near and far detectors (optional)
 - Background-related
 - Go deeper to reduce cosmic-induced backgrounds
 - Enough active and passive shielding
 - Use more powerful nuclear reactors

Daya Bay nuclear power plant


- 4 reactor cores, 11.6 GW
- 2 more cores in 2011, 5.8 GW
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds



neutrino detection:

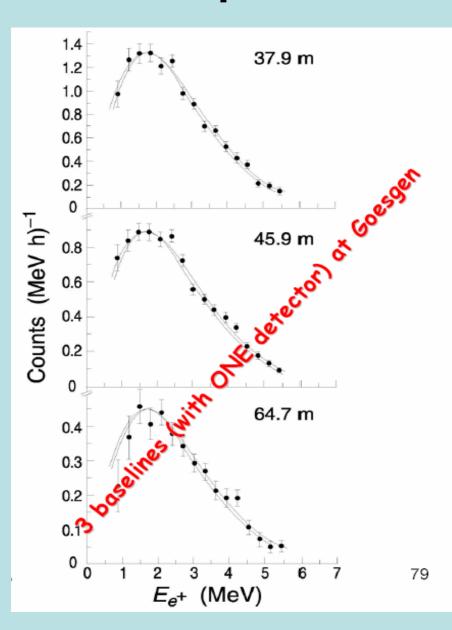
Inverse- \beta reaction in liquid scintillator

 $\overline{\nu}_e + p \rightarrow e^+ + n$

 $\begin{array}{c} \tau \approx 180 \text{ or } 28 \text{ } \mu s (0.1\% \text{ Gd}) \\ \\ n+p \rightarrow d + \gamma \left(2.2 \text{ MeV}\right) \\ \\ n+Gd \rightarrow Gd^* + \gamma \text{'s } \left(8 \text{ MeV}\right) \end{array}$

Neutrino Event: coincidence in time, space and energy

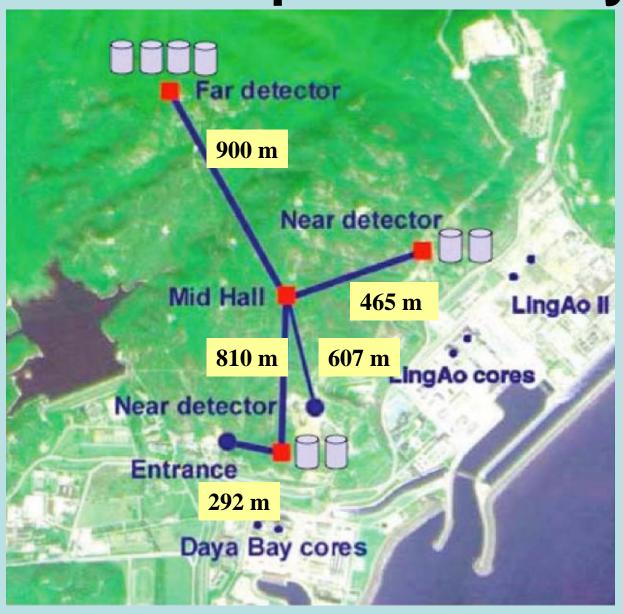
Neutrino energy:


$$E_{\overline{v}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+}$$

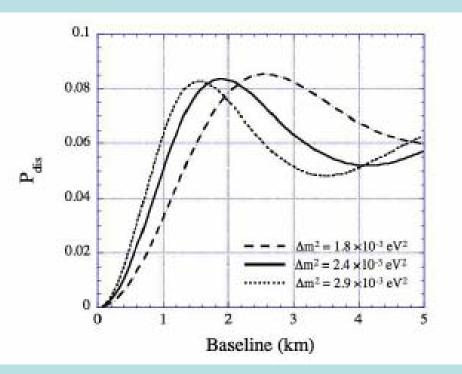
10-40 keV

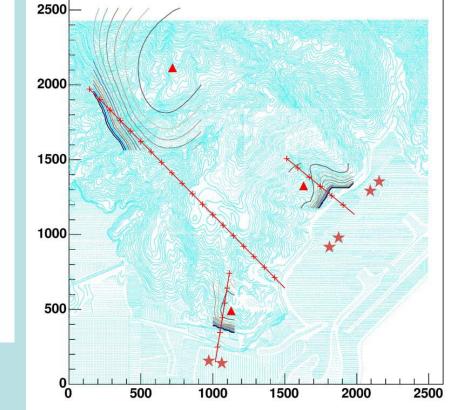
1.8 MeV: Threshold

Prediction of reactor neutrino spectrum


- Reactor neutrino rate and spectrum depends on:
 - The fission isotopes and their fission rate, uncorrelated ~ 1-2%
 - Fission rate depends on thermal power, uncorrelated ~ 1%
 - Energy spectrum of weak decays of fission isotopes, correlated ~ 1%
- Three ways to obtain reactor neutrino spectrum:
 - Direct measurement at near site
 - First principle calculation
 - Sum up neutrino spectra of ²³⁵U,
 ²³⁹Pu, ²⁴¹Pu(from measurement)
 and ²³⁸U(from calculation, ~ 1%)
- They all agree well within 3%

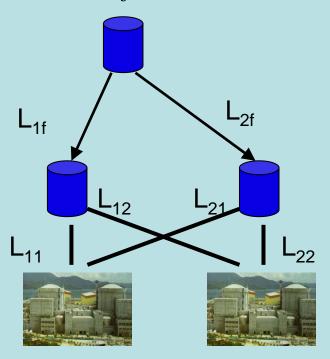
Design considerations


- Identical near and far detectors to cancel reactor-related errors
- Multiple modules for reducing detector-related errors and cross checks
- Three-zone detector modules to reduce detector-related errors
- Overburden and shielding to reduce backgrounds
- Multiple muon detectors for reducing backgrounds and cross checks
- Movable detectors for swapping


Experiment Layout

- Multiple detectors per site facilitates cross-check of detector efficiency
- Two near sites to sample neutrino flux from reactor groups

Baseline optimization and site selection

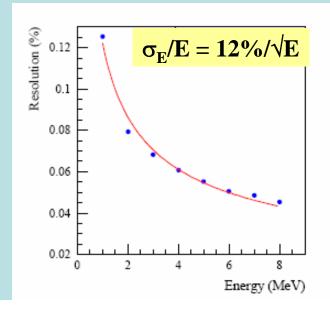


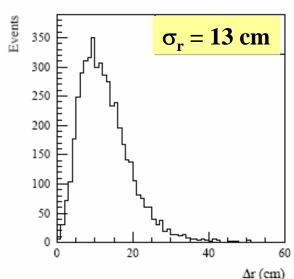
- Neutrino flux and spectrum
- Detector systematical error
- Backgrounds from environment
- Cosmic-rays induced backgrounds (rate and shape) taking into mountain shape: fast neutrons, 9Li, ...

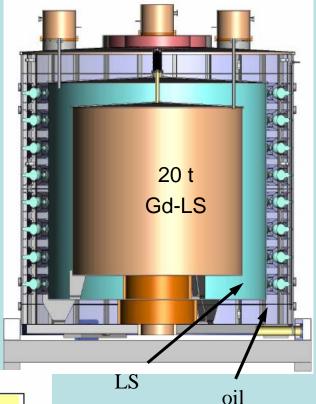
Reactor Related Systematic Uncertainty

For multi cores, apply a trick to deweight oversampled cores to maximize near/far cancellation of the reactor power fluctuation.

$$\alpha = \frac{\frac{1}{L_{22}^2 L_{1f}^2} - \frac{1}{L_{21}^2 L_{2f}^2}}{\frac{1}{L_{11}^2 L_{2f}^2} - \frac{1}{L_{12}^2 L_{1f}^2}}$$


$$\frac{\text{Near}}{\text{Far}} = \alpha \frac{\text{Near1}}{\text{Far}} + \frac{\text{Near2}}{\text{Far}}$$


Assuming 30 cm precision in core position

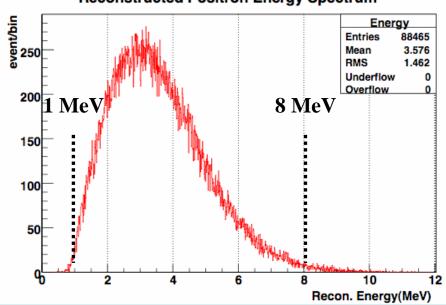

Number of cores	α	$\sigma_{\rho}(\text{power})$	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Central Detector modules

- Three zones modular structure:
 - I. target: Gd-loaded scintillator
 - II. γ -catcher: normal scintillator
 - III. Buffer shielding: oil
- Reflector at top and bottom
- 192 8"PMT/module
- Photocathode coverage:
 - **5.6 %** → **12%(with reflector)**

Target: 20 t, 1.6m γ-catcher: 20t, 45cm

Buffer: 40t, 45cm


Inverse-beta Signals

Antineutrino Interaction Rate (events/day per 20 ton module)

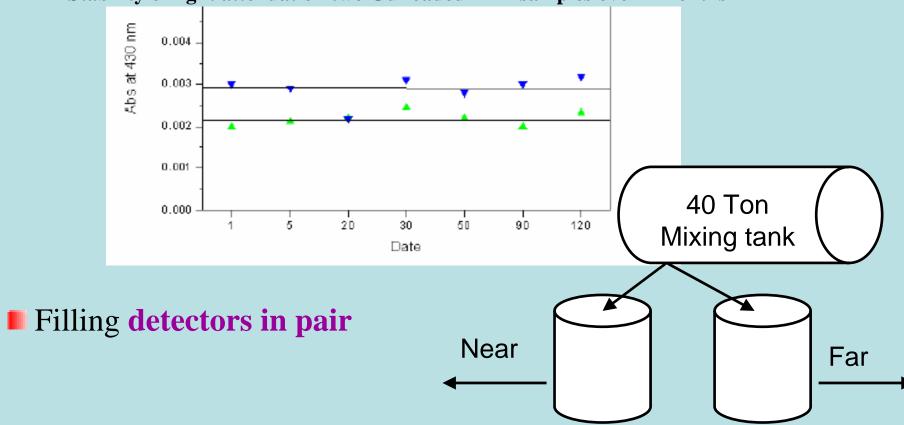
Daya Bay near site 960 Ling Ao near site 760 Far site 90
$$\begin{split} E_{e+}(\text{``prompt''}) \in & [1,8] \text{ MeV} \\ E_{n\text{-}cap}(\text{``delayed''}) \in & [6,10] \text{ MeV} \\ t_{delayed}\text{-}t_{prompt} \in & [0.3,200] \text{ } \mu\text{s} \end{split}$$


Prompt Energy Signal

Reconstructed Positron Energy Spectrum

Delayed Energy Signal

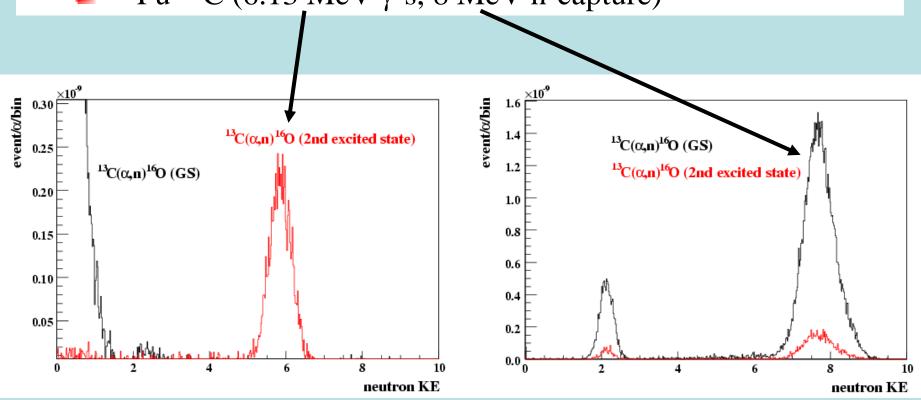
reconstructed neutron (delayed) capture energy spectrum



Statistics comparable to a single module at far site in 3 years.

Gd-loaded Liquid Scintillator

- ■Baseline recipe: Linear Alkyl Benzene (LAB) doped with organic Gd complex (0.1% Gd mass concentration)
- LAB (suggested by SNO+): high flashpoint, safer for environment and health, commercially produced for detergents.


Stability of light attenuation two Gd-loaded LAB samples over 4 months

Calibrating Energy Cuts

Automated deployed radioactive sources to calibrate the detector energy and position response within the entire range.

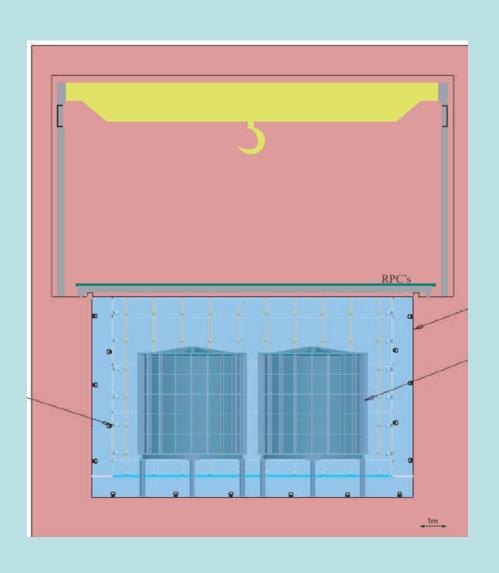
- 68 Ge (0 KE $e^+ = 2 \times 0.511$ MeV γ 's)
- ⁶⁰Co (2.506 MeV γ's)
- ²³⁸Pu-¹³C (6.13 MeV γ's, 8 MeV n-capture)

Systematics Budget

Detector-related

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	< 0.01	< 0.01
Total detect	tor-related uncertainty	1.7%	0.38%	0.18%	0.12%

Baseline: currently achievable **relative** uncertainty without R&D


Goal: expected **relative** uncertainty after R&D

Swapping: can reduce **relative** uncertainty further

Reactor-related

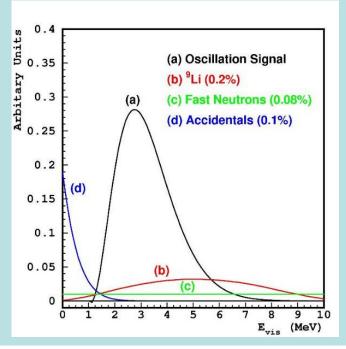
Number of cores	α	$\sigma_{\rho}(\text{power})$	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Background reduction: redundant and efficient muon veto system

Multiple muon tagging detectors:

- Water pool as Cherenkov counter has inner/outer regions
- RPC at the top as muon tracker
- Combined efficiency
 - > (99.5 ± 0.25) %

Background related errors


Uncorrelated backgrounds:
 U/Th/K/Rn/neutron

Single gamma rate @ 0.9MeV < 50Hz Single neutron rate < 1000/day

Correlated backgrounds:

Fast Neutrons: double coincidence

⁸He/⁹Li: neutron emitting decays

	Daya Bay Near	Ling Ao Near	Far Hall
Baseline (m)	363	481 from Ling Ao	1985 from Daya Bay
		526 from Ling Ao II	1615 from Ling Ao's
Overburden (m)	98	112	350
Radioactivity (Hz)	< 50	< 50	< 50
Muon rate (Hz)	36	22	1.2
Antineutrino Signal (events/day)	930	760	90
Accidental Background/Signal (%)	< 0.2	< 0.2	< 0.1
Fast neutron Background/Signal (%)	0.1	0.1	0.1
⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2

Summary of Systematic Uncertainties

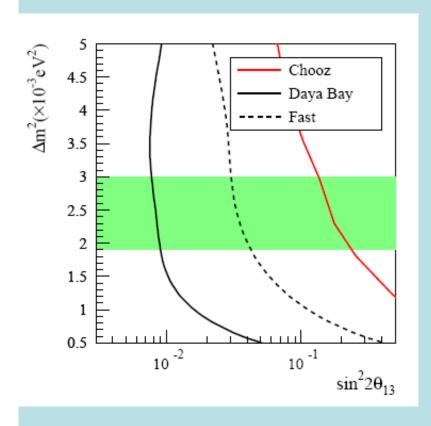
sources	Uncertainty
Neutrinos from	0.087% (4 cores)
Reactor	0.13% (6 cores)
Detector	0.38% (baseline)
(per module)	0.18% (goal)
Backgrounds	0.32% (Daya Bay near)
	0.22% (Ling Ao near)
	0.22% (far)
Signal statistics	0.2%

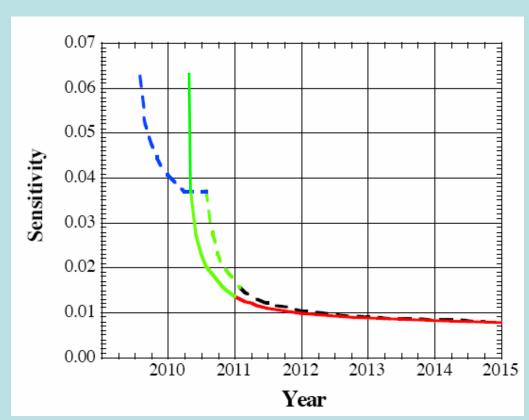
Schedule

begin civil construction

Bring up the first pair of detectors
 Jun 2009

Begin data taking with the Near-Mid configuration


Sept 2009


April 2007

Begin data taking with the Near-Far configuration

Jun 2010

Sensitivity to Sin²2θ₁₃

Other physics capabilities: Supernova watch, Sterile neutrinos, ...

Daya Bay collaboration

Summary

- The Daya Bay experiment will reach a sensitivity of ≤ 0.01 for sin²2θ₁₃
- Design of detectors is in progress and R&D is ongoing
- Detailed engineering design of tunnels and infrastructures underway
- Received commitment from Chinese funding agencies
- Passed US Physics Review CD-1 scheduled for April 2007
- Start civil construction in 2007, deploy detectors in 2009, and begin full operation in 2010