

Measuring $\sin^2 2\theta_{13}$ with the Daya Bay nuclear power reactors

Yifang Wang for Daya Bay collaboration Institute of High Energy Physics

Daya Bay Neutrino Experiment

- Measure $\sin^2 2\theta_{13}$ with a sensitivity of 0.01 at 90% CL, an improvement of an order of magnitude over previous experiments
- 4 reactor cores, 2 more in 2011, a total of 17.4 GW
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds
- 60 km from Hong Kong, Convenient Transportation, Living conditions, communications

Layout of the experiment

Near-Far detector schemes:

To cancel reactor-related errors

Residual error ~0.1%

Swap near-far detectors

To cancel detector-related errors.

Residual error ~0.2%

Detector deep undergrounds

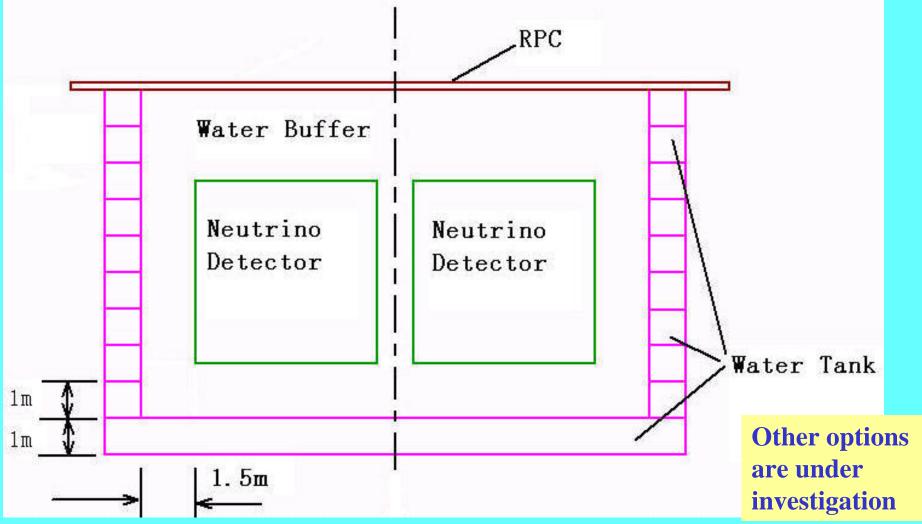
To reduce backgrounds

B/S at near site: ~0.5%

B/S at far site: $\sim 0.2\%$

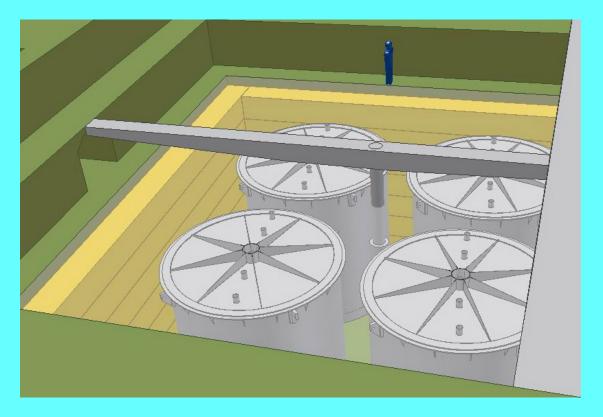
Fast Measurement

DYB+Mid, 2008-2009


Sensitivity (1 year) ~0.03

Full Measurement

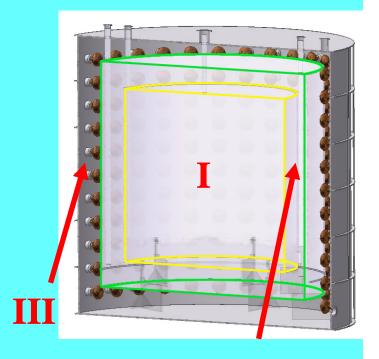
DYB+LA+Far, from 2010


Sensitivity (3 year) < 0.01

Baseline detector design: multiple neutrino modules and multiple vetos

Redundancy is a key for the success of this experiment

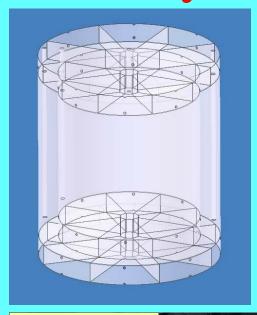
Neutrino detector: multiple modules

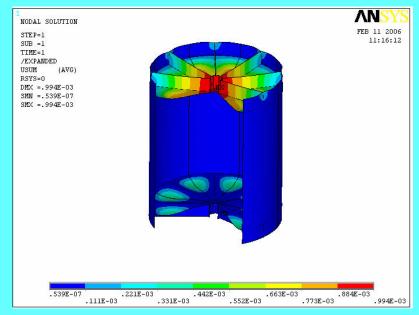


Two modules at near sites Four modules at far site

- Multiple modules for side-by-side cross check
- Reduce uncorrelated errors
- Smaller modules for easy construction, moving, handing, ...
- Small modules for less sensitivity to scintillator aging, details of the light transport, ...

Central Detector modules


- Three zones modular structure:
 - I. target: Gd-loaded scintillator,
 - II. γ -ray catcher: normal scintillator
 - III. Buffer shielding: oil
- Advantages: neutrino events on target are determined by capture time, not position
- Cylindrical module for easy construction
- Light reflector at top and bottom for cost saving
- Module dimension:
 - Target: 3.2 m high, 3.2 m diameter,
 determined by the limit of statistical errors
 - γ -ray catcher: 0.45 m thick, determined by the limit of efficiency error
 - Buffer: 0.45 cm thick, determined by backgrounds from PMT glass
- ~ 200 8"PMT/module
- Photocathode coverage: 5.6 % → 10%(with light reflector)
- Performance: energy resolution 5%@8MeV, position resolution ~ 14 cm



II

Acrylic tanks

Design:

Manufacture

R&D of Gd-loaded scintillator

• Requirements:

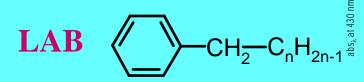
- Gd-loading: ~ (0.1-0.15)%

- light yield: > 50% Anthracene

– Attenuation length: > 10m

– Stability: < 3%/year</p>

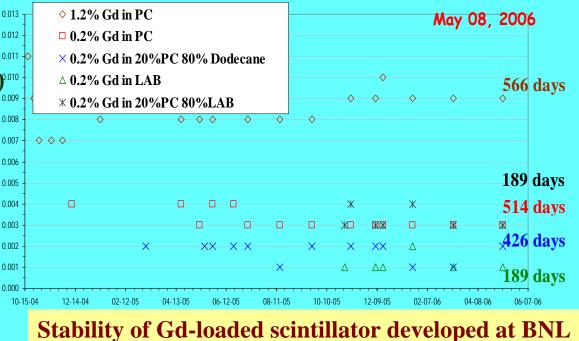
R&D Efforts:


Low cost

- PC+MO/DC(BNL)

- MT+MO/DC(IHEP)

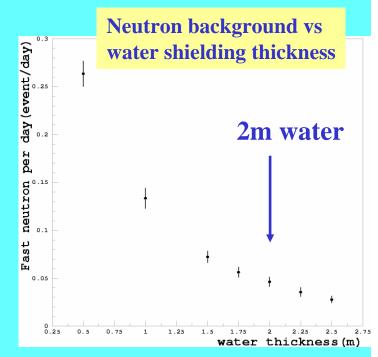
- LAB+PC(BNL)

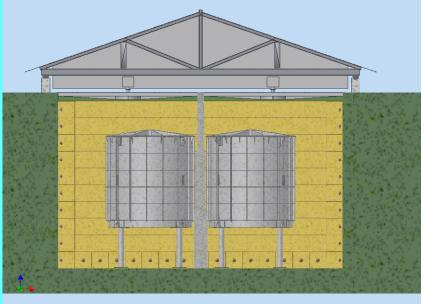

- LAB(IHEP, BNL, Dubna)¹⁰¹⁰

High light yield, very transparent 0.002
High flash point 147°C,
environmentally friendly

Gd-loaded scintillator developed at IHEP

Sample	Atten.	Light
	Len. (m)	yield
2: 8 mesitylene: dodecane(LS)	15.0	-
LAB	-	-
PPO+ bis-MSB(Flour) in LS	11.3	0.459
0.2% Gd-EHA + Flour + LS	8.3	0.528
Flour + LAB	23.7	0.542
0.2%Gd-TMHA+Flour+LAB	19.1	0.478




Calibration and Monitoring

- Source calibration: energy scale, resolutions, ...
 - Deployment system
 - Automatic: quick but limited space points
 - Manual: slow but everywhere
 - Choices of sources: energy(0.5-8 MeV), activity(<1KHz), γ /n,...
 - Cleanness
- Calibration with physics events:
 - Neutron capture
 - Cosmic-rays
- LED calibration: PMT gain, liquid transparency, ...
- Environmental monitoring: temp., voltage, radon, ...
- Mass calibration and high precision flow meters
- Material certification

Water Buffer & VETO

- At least 2m water buffer to shield backgrounds from neutrons and γ's from lab walls
- Cosmic-muon VETO Requirement:
 - Inefficiency < 0.5%
 - known to <0.25%
- Solution: Two active vetos
 - Active water buffer, Eff.>95%
 - Muon tracker, Eff. > 90%
 - RPC
 - Water tanks
 - scintillator strips
 - total ineff. = 10%*5% = 0.5%
- Two vetos to cross check each other and control uncertainty
- Baseline options:Water pool + tracker

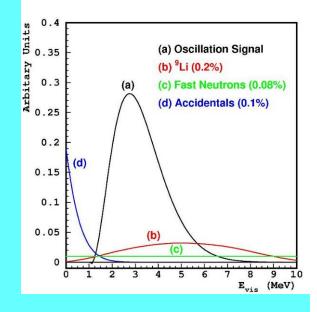
Background related error

- Need enough shielding and active vetos
- How much is enough ? → error < 0.2%
 - Uncorrelated backgrounds: U/Th/K/Rn/neutron

Single gamma rate @ 0.9MeV < 50Hz

Single neutron rate < 1000/day

2m water + 50 cm oil shielding


- Correlated backgrounds: $n \propto E_{\mu}^{0.75}$

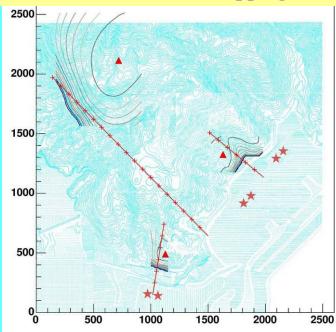
Neutrons: >100 MWE + 2m water

Y.F. Wang et al., PRD64(2001)0013012

 8 He/ 9 Li: > 250 MWE(near), > 1000 MWE(far)

T. Hagner et al., Astroparticle. Phys. 14(2000) 33

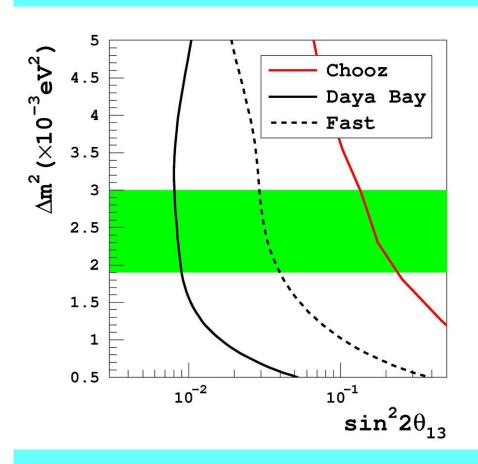
	Near	far
Neutrino signal rate(1/day)	560	80
Natural backgrounds(Hz)	45.3	45.3
Accidental BK/signal	0.04%	0.02%
Correlated fast neutron Bk/signal	0.14%	0.08%
⁸ He+ ⁹ Li BK/signal	0.5%	0.2%

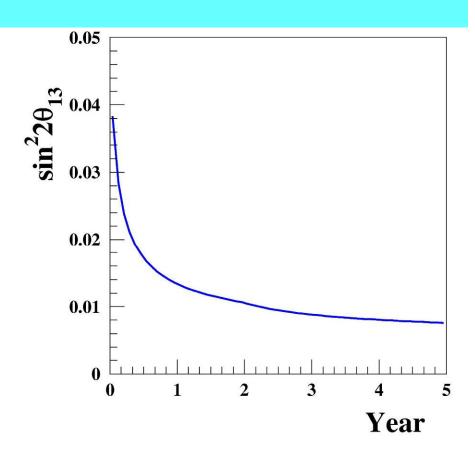

Systematic errors

			Chooz	Palo Verde	KamLAND	Daya Bay
Reactor power		0.7	0.7	2.05	<0.13%	
Reactor fuel/v spectra		2.0	2.0	2.7		
v cross section		0.3	0.2	0.2	0	
No. of protons H/C ratio Mass		0.8	0.8	1.7	0.2 > 0	
		-	-	2.1	0.2 > 0	
Efficiency Energy cuts Position cuts Time cuts P/Gd ratio		ergy cuts	0.89	2.1	0.26	0.2
		sition cuts	0.32		3.5	0
		ne cuts	0.4		0.	0.1
		Gd ratio	1.0	-	0.1 > 0	
	n	multiplicity	0.5		-	<0.1
background correlated		orrelated	0.3	3.3	1.8	0.2
	u	ncorrelated	0.3	1.8	0.1	<0.1
Trigger		0	2.9	0	<0.1	
livetime		0	0.2	0.2	0.03	

Baseline optimization and Sensitivity to $\sin^2 2\theta_{13}$

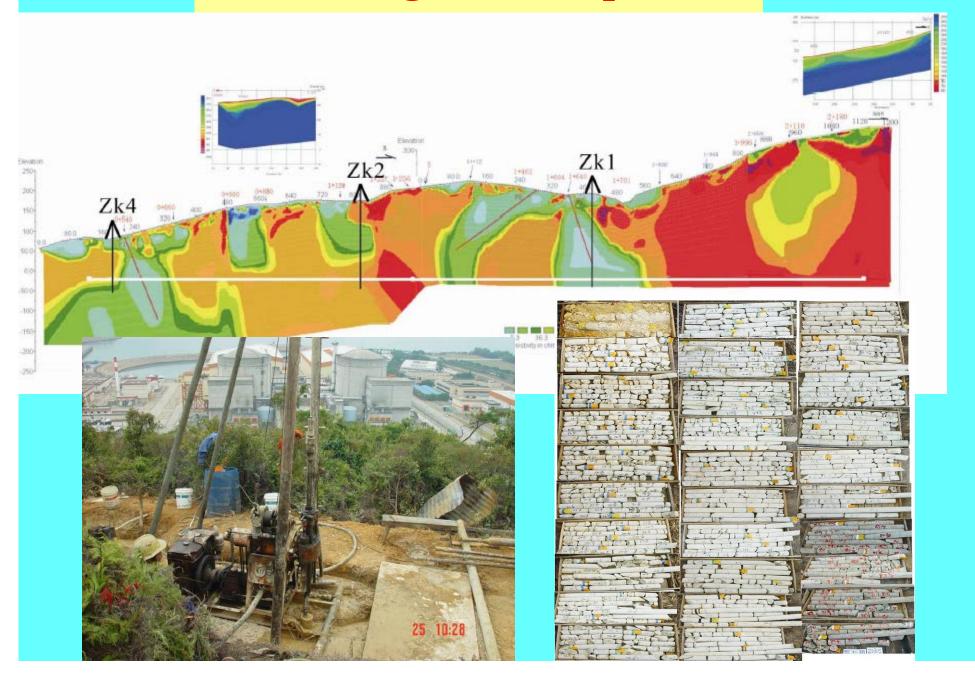
- Reactor-related correlated error: $\sigma_c \sim 2\%$
- Reactor-related uncorrelated error: $\sigma_r \sim 1-2\%$
- Neutrino spectrum shape error: $\sigma_{\text{shape}} \sim 2\%$
- Detector-elated correlated error: $\sigma_D \sim 1-2\%$
- Detector-related uncorrelated error: $\sigma_d \sim 0.5\%$
- Background-related error:
- fast neutrons: $\sigma_f \sim 100\%$,
- accidentals: $\sigma_n \sim 100\%$,
- isotopes(${}^{8}\text{Li}, {}^{9}\text{He}, ...$): $\sigma_{s} \sim 50-60\%$
- Bin-to-bin error: $\sigma_{b2b} \sim 0.5\%$


Many are cancelled by the near-far scheme and detector swapping



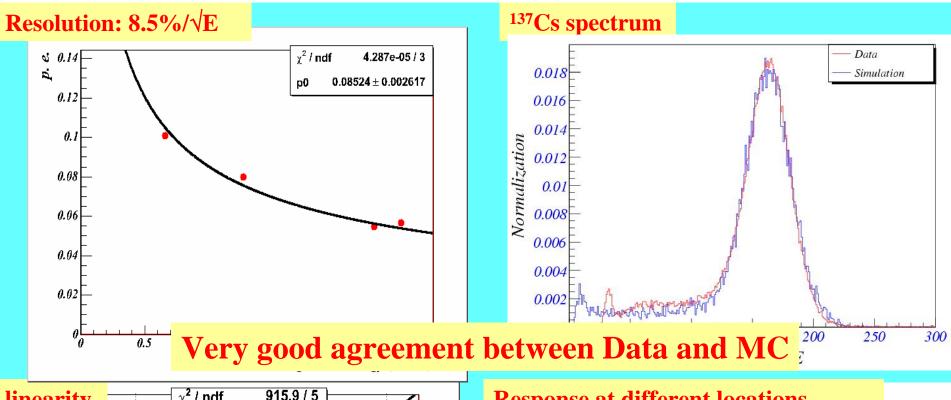
$$\chi^{2} = \min_{\alpha's} \sum_{i=1}^{Nbin} \sum_{A=1,3} \frac{\left[M_{i}^{A} - T_{i}^{A} (1 + \alpha_{D} + \alpha_{c} + \alpha_{d}^{A} + c_{i} + \sum_{r} \frac{T_{i}^{rA}}{T_{i}^{A}} \alpha_{r}) - b^{A} B_{i}^{A} \right]^{2}}{T_{i}^{A} + T_{i}^{A2} \sigma_{b}^{2} + B_{i}^{A}}$$

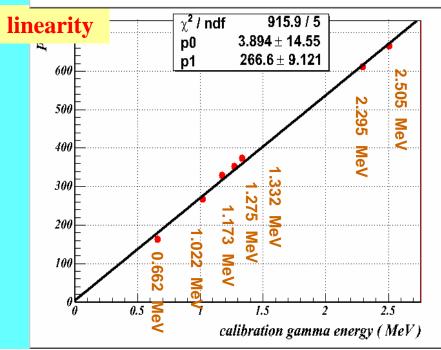
$$+\frac{\alpha_{D}^{2}}{\sigma_{D}^{2}} + \frac{\alpha_{c}^{2}}{\sigma_{c}^{2}} + \sum_{r} \frac{\alpha_{r}^{2}}{\sigma_{r}^{2}} + \sum_{i=1}^{Nbin} \frac{c_{i}^{2}}{\sigma_{shape}^{2}} + \sum_{A=1,3} \left(\frac{\alpha_{d}^{A2}}{\sigma_{d}^{2}} + \frac{b^{A2}}{\sigma_{B}^{2}} \right)$$

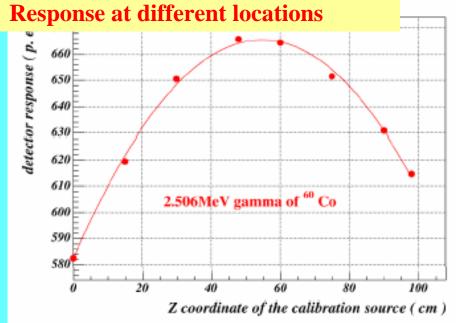

Sensitivity to $\sin^2 2\theta_{13}$

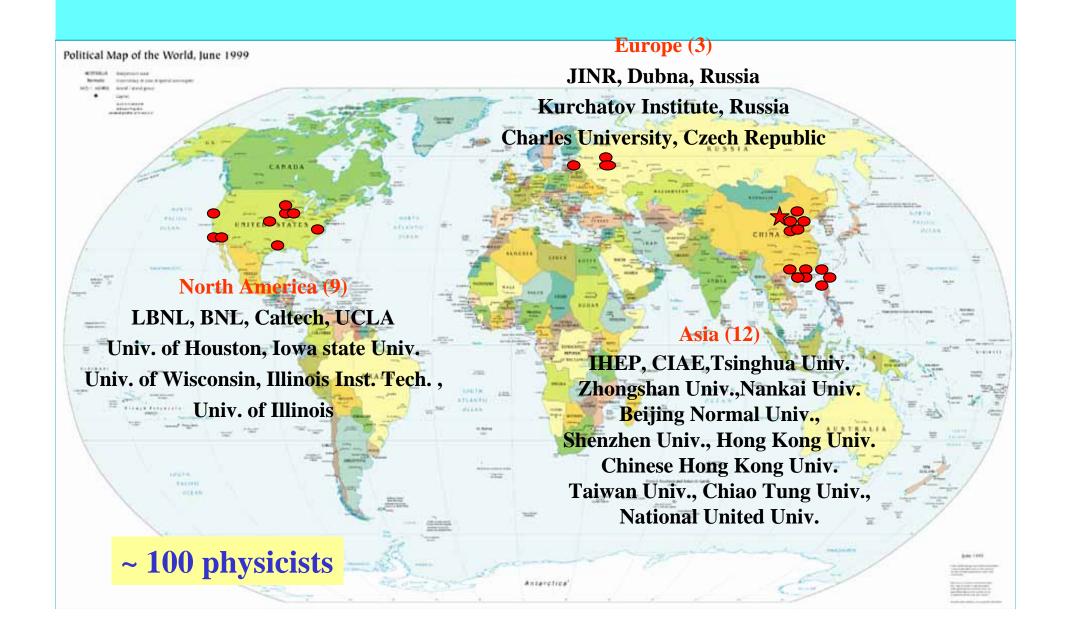
Other physics capabilities: Supernova watch, Sterile neutrinos, ...

Site investigation completed




Daya Bay Prototype: 45 PMT for 0.6 t LS



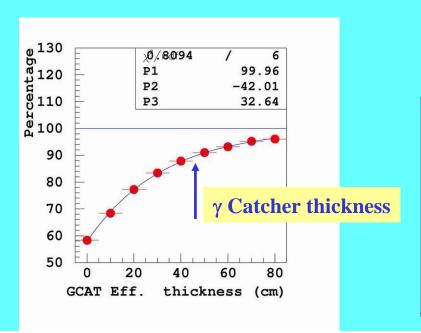


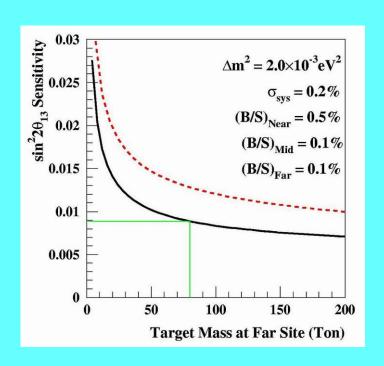
Daya Bay collaboration

Status of the project

- CAS officially approved the project
- Chinese Atomic Energy Agency and the Daya Bay nuclear power plant are very supportive to the project
- Funding agencies in China are supportive, R&D funding in China approved and available
- R&D funding from DOE approved
- Site survey including bore holes completed
- R&D started in collaborating institutions, the prototype is operational
- Proposals to governments under preparation
- Good collaboration among China, US and other countries

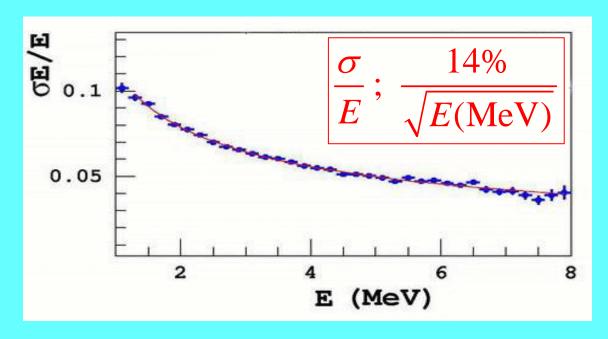
Schedule of the project

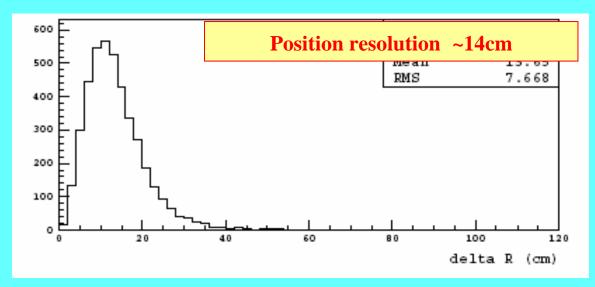

Schedule


- 2004-2007 R&D, engineering design,
 - proposals for funding
- 2007-2008 Civil Construction
- 2007-2009 Detector construction
- 2009-2010 Installation and testing
 - (one Near hall running)
- **2010** Begin operations with full detector

Detector dimension

Target mass: 20 t
Dimension of target:
3.2 m × 3.2m





Oil buffer thickness

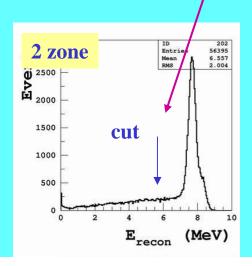
Isotopes	Purity (ppb)	20cm (Hz)	25cm (Hz)	30cm (Hz)	40cm (Hz)
²³⁸ U(>1MeV)	50	2.7	2.0	1.4	0.8
²³² Th(>1MeV)	50	1.2	0.9	0.7	0.4
⁴⁰ K(>1MeV)	10	1.8	1.3	0.9	0.5
Total		5.7	4.2	3.0	1.7

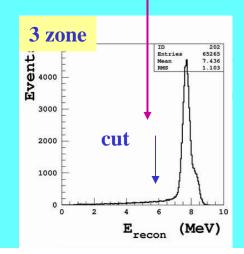
Resolution

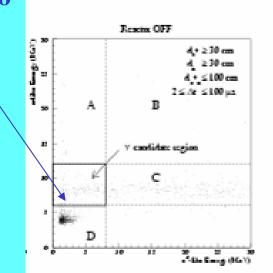
Why three zones?

Vessel boundary

Capture on H


 (cm^2)


- Three zones:
 - Complicated acrylic tank construction
 - γ backgrounds on walls
 - Less fiducial volume
- Two zones:
 - Neutrino energy spectrum distorted
 - Neutron efficiency error due to energy scale and resolution:


two zones: 0.4%, three zones 0.2%

- Using 4 MeV cut can reduce the error by a factor of two, but

backgrounds from β+γ do not allow us to do so

Events 2500

1000

500

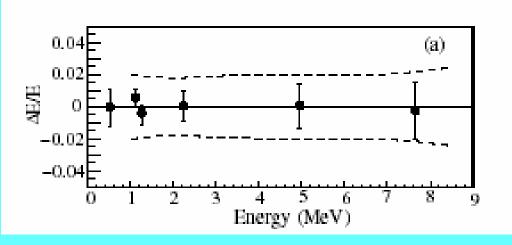
Capture on Gd

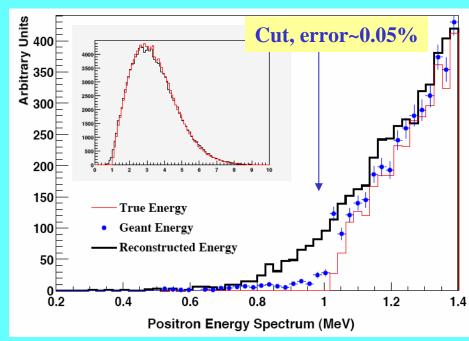
20000

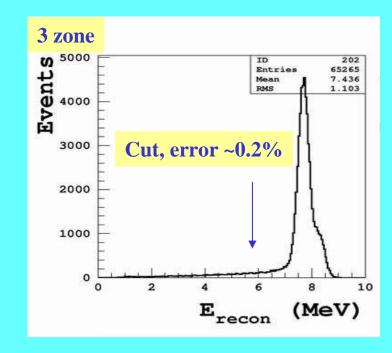
Reactor-related Uncertainties of Daya Bay

• The error due to power fluctuations of the reactors is given by:

$$\sigma_{sys} = \sigma_p \sqrt{\sum_r \left(f_F^r - f_N^r\right)^2}$$

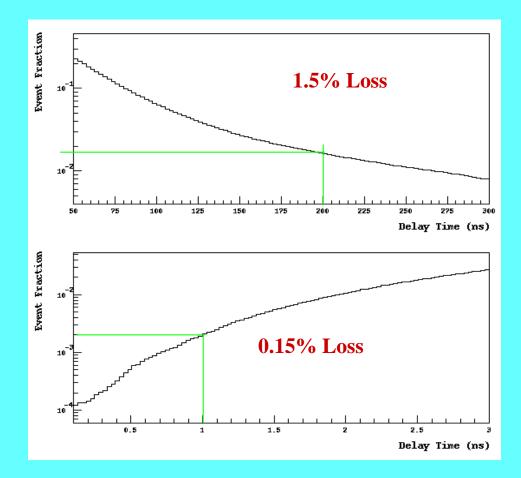

Based on experience of past experiments, due to uncertainty in measuring the amount of thermal power produced, the uncorrelated error per reactor core $\sigma_{\text{p}}\approx 2\%$.


 $f_{\ F}^{r}$ and $f_{\ N}^{r}$ are fractions of the events at the far and near site from reactor r respectively.


# Reactor	Syst. error due to	Syst. error due to	Total
Cores	Power Fluctuations	Core Positions	syst. error
4	0.035%	0.08%	0.087%
6	0.097%	0.08%	0.126%

Energy Cuts

Dominated by energy scale KamLAND ~ 1%



Time Cuts

Neutron time window uncertainty:

- $\Delta t = 10 \text{ ns} \rightarrow 0.03\%$ uncertainty
- Use common clock

- \rightarrow Baseline = 0.1%
- → Goal = 0.03%

Livetime

 Measure relative livetimes using accurate common clock

• Use LED to simulate neutrino events

Should be negligible error

Target Volume

Can be cancelled by swapping

KamLAND: ~1%

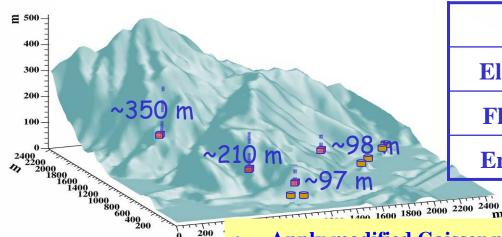
CHOOZ: 0.02%?

Flowmeters - 0.02% repeatability

- \rightarrow Baseline = 0.2%
- → Goal = 0.02%

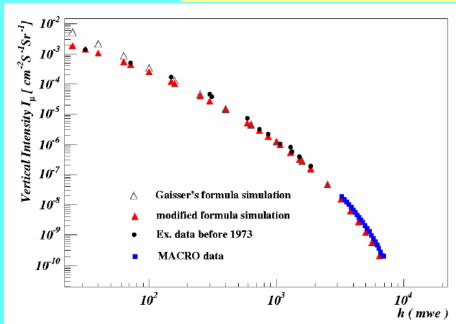
H/C and H/Gd ratio

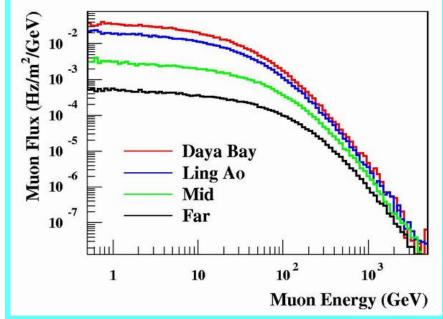
Can be cancelled by swapping

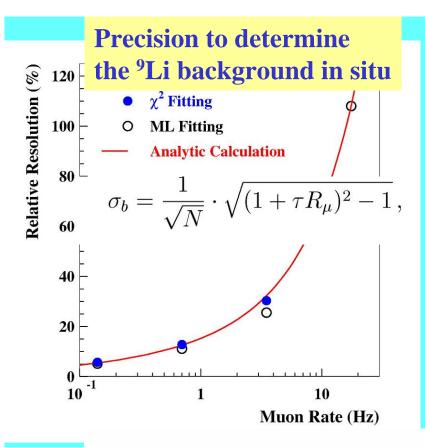

• H/C ratio

- CHOOZ claims 0.8% absolute based on multiple lab analyses (combustion)
- Use well defined liquid such as LAB and dodecane
- R&D: measure via NMR or neutron capture
- Expected error: 0.1%-0.2%

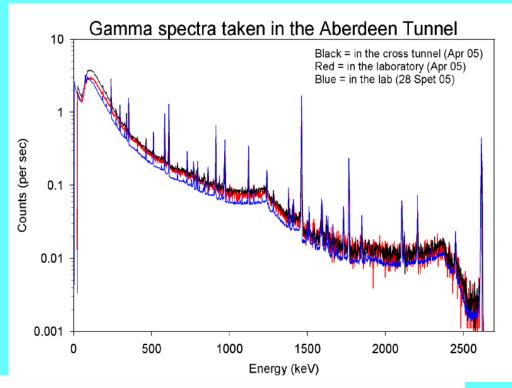
H/Gd ratio

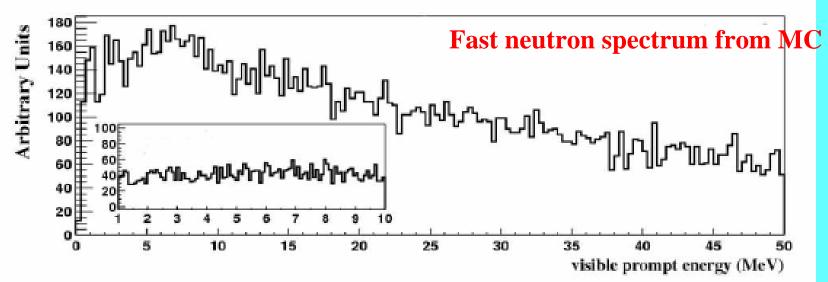

- Can be measured by neutron activated x-rays and neutron capture time
- For $\Delta t = 0.5 \mu s$, \rightarrow error ~ 0.02%

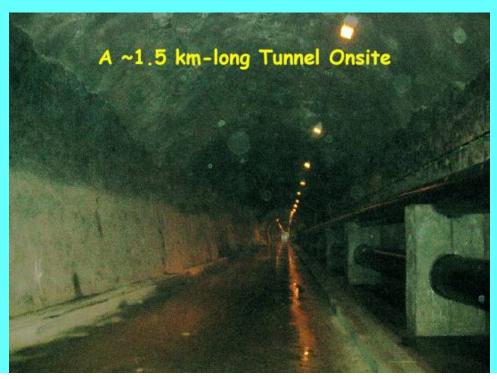

Cosmic-muons at the laboratory

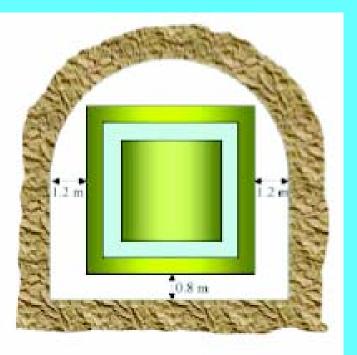


		DYB	LA	Mid	Far
Elev	vation (m)	97	98	208	347
Flu	x (Hz/m²)	1.2	0.73	0.17	0.045
Ene	rgy (GeV)	55	60	97	136


- Apply modified Gaisser parametrization for cosmic-ray flux at surface
- Use MUSIC and mountain profile to estimate muon flux & energy




Spectrum of accidental background



Tunnel construction

- The tunnel length is about 3000m
- Local railway construction company has a lot of experience (similar cross section)
- Cost estimate by professionals, ~ 3K \$/m
- Construction time is ~ 15-24 months
- A similar tunnel on site as a reference

